Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2846: 263-283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141241

RESUMEN

Chromatin endogenous cleavage coupled with high-throughput sequencing (ChEC-seq) is a profiling method for protein-DNA interactions that can detect binding locations in vivo, does not require antibodies or fixation, and provides genome-wide coverage at near nucleotide resolution.The core of this method is an MNase fusion of the target protein, which allows it, when triggered by calcium exposure, to cut DNA at its binding sites and to generate small DNA fragments that can be readily separated from the rest of the genome and sequenced.Improvements since the original protocol have increased the ease, lowered the costs, and multiplied the throughput of this method to enable a scale and resolution of experiments not available with traditional methods such as ChIP-seq. This method describes each step from the initial creation and verification of the MNase-tagged yeast strains, over the ChEC MNase activation and small fragment purification procedure to the sequencing library preparation. It also briefly touches on the bioinformatic steps necessary to create meaningful genome-wide binding profiles.


Asunto(s)
Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cromatina/genética , Cromatina/metabolismo , Sitios de Unión , Análisis de Secuencia de ADN/métodos , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética , Biología Computacional/métodos
2.
Elife ; 112022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404235

RESUMEN

Throughout evolution, new transcription factors (TFs) emerge by gene duplication, promoting growth and rewiring of transcriptional networks. How TF duplicates diverge was studied in a few cases only. To provide a genome-scale view, we considered the set of budding yeast TFs classified as whole-genome duplication (WGD)-retained paralogs (~35% of all specific TFs). Using high-resolution profiling, we find that ~60% of paralogs evolved differential binding preferences. We show that this divergence results primarily from variations outside the DNA-binding domains (DBDs), while DBD preferences remain largely conserved. Analysis of non-WGD orthologs revealed uneven splitting of ancestral preferences between duplicates, and the preferential acquiring of new targets by the least conserved paralog (biased neo/sub-functionalization). Interactions between paralogs were rare, and, when present, occurred through weak competition for DNA-binding or dependency between dimer-forming paralogs. We discuss the implications of our findings for the evolutionary design of transcriptional networks.


Asunto(s)
Evolución Molecular , Factores de Transcripción , ADN , Duplicación de Gen , Genoma , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA