Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Chemphyschem ; 24(5): e202200819, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385485

RESUMEN

The reaction of N2 O5 at atmospheric interfaces has recently received considerable attention due to its importance in atmospheric chemistry. N2 O5 reacts preferentially with Cl- to form ClNO2 /NO3 - (Cl- substitution), but can also react with H2 O to form 2HNO3 (hydrolysis). In this paper, we explore these competing reactions in a theoretical study of the clusters N2 O5 /Cl- /nH2 O (n=2-5), resulting in the identification of three reaction motifs. First, we uncovered an SN 2-type Cl- substitution reaction of N2 O5 that occurs very quickly due to low barriers to reaction. Second, we found a low-lying pathway to hydrolysis via a ClNO2 intermediate (two-step hydrolysis). Finally, we found a direct hydrolysis pathway where H2 O attacks N2 O5 (one-step hydrolysis). We find that Cl- substitution is the fastest reaction in every cluster. Between one-step and two-step hydrolysis, we find that one-step hydrolysis barriers are lower, making two-step hydrolysis (via ClNO2 intermediate) likely only when concentrations of Cl- are high.

2.
Phys Chem Chem Phys ; 25(26): 17306-17319, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37345428

RESUMEN

Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, 1H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as C6H5COC6H4COOH·(H2O)n, where n = 8 for relatively small clusters and n = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of n = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid-base equilibrium of the keto-forms, with a spectroscopically measured pKa of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores.

3.
Phys Chem Chem Phys ; 24(17): 10033-10043, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35415732

RESUMEN

In this paper we study collisions between polyatomic radicals - an important process in fields ranging from biology to combustion. Energy transfer, formation of intermediate complexes and recombination reactions are treated, with applications to peroxy radicals in atmospheric chemistry. Multi-reference perturbation theory, supplemented by coupled-cluster calculations, describes the potential energy surfaces with high accuracy, including the interaction of singlet and triplet spin states during radical recombination. Our multi-reference molecular dynamics (MD) trajectories on methyl peroxy radicals confirm the reaction mechanism postulated in earlier studies. Specifically, they show that if suitable pre-reactive complexes are formed, they will rapidly lead to the formation and subsequent decomposition of tetroxide intermediates. However, generating multi-reference MD trajectories is exceedingly computationally demanding, and we cannot adequately sample the whole conformational space. To answer this challenge, we promote the use of a novel simplified semi-empirical MD methodology. It assumes the collision is governed by two states, a singlet (S0) and a triplet (T1) state. The method predicts differences between collisions on S0 and T1 surfaces, and qualitatively includes not only pre-reactive complex formation, but also recombination processes such as tetroxide formation. Finally, classical MD simulations using force-fields for non-reactive collisions are employed to generate thousands of collision trajectories, to verify that the semi-empirical method is sampling collisions adequately, and to carry out preliminary investigations of larger systems. For systems with low activation energies, the experimental rate coefficient is surprisingly well reproduced by simply multiplying the gas-kinetic collision rate by the simulated probability for long-lived complex formation.


Asunto(s)
Recombinación Genética , Transferencia de Energía , Cinética , Conformación Molecular
4.
J Phys Chem A ; 126(2): 190-197, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34990547

RESUMEN

Gallic acid (GA) has been characterized in terms of its optical properties in aqueous solutions at varying pH in experiments and in theoretical calculations by analyzing the protonated and deprotonated forms of GA. This work is part of a series of studies of the optical properties of different carboxylic acids in aqueous media. The experimental electronic spectra of GA exhibit two strong well-separated absorption peaks (B- and C-bands), which agree with previous studies. However, in the current study, an additional well-defined low-energy shoulder band (A-band) in the optical spectra of GA was identified. It is likely that the A-band occurs for other carboxylic acids in solution, but because it can overlap with the B-band, it is difficult to discern. The theoretical calculations based on density functional theory were used to simulate the optical absorption spectra of GA in water at different pH to prove the existence of this newly found shoulder band and to describe and characterize the full experimental optical spectra of GA. Different cluster models were tested: (i) all water molecules are coordinated near the carboxy-group and (ii) additional water molecules near the hydroxy-groups of the phenyl ring were included. In this study, we found that both the polarizable continuum model (dielectric property of a medium) and neighboring water molecules (hydrogen-bonding) play significant roles in the optical spectrum. The results showed that only an extended cluster model with water molecules near carboxy- and hydroxy-groups together with the polarizable continuum model allowed us to fully reproduce the experimental data and capture all three absorption bands (A, B, and C). The oscillator strengths of the absorption bands were obtained from the experimental data and compared with theoretical results. Additionally, our work provides a detailed interpretation of the pH effects observed in the experimental absorption spectra.

5.
J Chem Phys ; 156(17): 174303, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525657

RESUMEN

We report vibrational spectra of the H2-tagged, cryogenically cooled X- · HOCl (X = Cl, Br, and I) ion-molecule complexes and analyze the resulting band patterns with electronic structure calculations and an anharmonic theoretical treatment of nuclear motions on extended potential energy surfaces. The complexes are formed by "ligand exchange" reactions of X- · (H2O)n clusters with HOCl molecules at low pressure (∼10-2 mbar) in a radio frequency ion guide. The spectra generally feature many bands in addition to the fundamentals expected at the double harmonic level. These "extra bands" appear in patterns that are similar to those displayed by the X- · HOD analogs, where they are assigned to excitations of nominally IR forbidden overtones and combination bands. The interactions driving these features include mechanical and electronic anharmonicities. Particularly intense bands are observed for the v = 0 → 2 transitions of the out-of-plane bending soft modes of the HOCl molecule relative to the ions. These involve displacements that act to break the strong H-bond to the ion, which give rise to large quadratic dependences of the electric dipoles (electronic anharmonicities) that drive the transition moments for the overtone bands. On the other hand, overtone bands arising from the intramolecular OH bending modes of HOCl are traced to mechanical anharmonic coupling with the v = 1 level of the OH stretch (Fermi resonances). These interactions are similar in strength to those reported earlier for the X- · HOD complexes.

6.
Phys Chem Chem Phys ; 23(17): 10487-10497, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33899856

RESUMEN

Water systems often contain complex macromolecular systems that absorb light. In marine environments, these light absorbing components are often at the air-water interface and can participate in the chemistry of the atmosphere in ways that are poorly understood. Understanding the photochemistry and photophysics of these systems represents a major challenge since their composition and structures are not unique. In this study, we present a successful microscopic model of this light absorbing macromolecular species termed "marine derived chromophoric dissolved organic matter" or "m-CDOM" in water. The approach taken involves molecular dynamics simulations in the ground state using on the fly Density Functional Tight-Binding (DFTB) electronic structure theory; Time Dependent DFTB (TD-DFTB) calculations of excited states, and experimental measurements of the optical absorption spectra in aqueous solution. The theoretical hydrated model shows key features seen in the experimental data for a collected m-CDOM sample. As will be discussed, insights from the model are: (i) the low-energy A-band (at 410 nm) is due to the carbon chains combined with the diol- and the oxy-groups present in the structure; (ii) the weak B-band (at 320-360 nm) appears due to the contribution of the ionized speciated form of m-CDOM; and (iii) the higher-energy C-band (at 280 nm) is due to the two fused ring system. Thus, this is a two-speciated formed model. Although a relatively simple system, these calculations represent an important step in understanding light absorbing compounds found in nature and the search for other microscopic models of related materials remains of major interest.

7.
Phys Chem Chem Phys ; 22(9): 5046-5056, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32077456

RESUMEN

The absorption spectra of molecular organic chromophores in aqueous media are of considerable importance in environmental chemistry. In this work, the UV-vis spectra of benzoic acid (BA), the simplest aromatic carboxylic acid, in aqueous solutions at varying pH and in the presence of salts are measured experimentally. The solutions of different pH provide insights into the contributions from both the non-dissociated acid molecule and the deprotonated anionic species. The microscopic interpretation of these spectra is then provided by quantum chemical calculations for small cluster models of benzoic species (benzoic acid and benzoate anion) with water molecules. Calculations of the UV-vis absorbance spectra are then carried out for different clusters such as C6H5COOH·(H2O)n and C6H5COO-·(H2O)n, where n = 0-8. The following main conclusions from these calculations and the comparison to experimental results can be made: (i) the small water cluster yields good quantitative agreement with observed solution experiments; (ii) the main peak position is found to be very similar at different levels of theory and is in excellent agreement with the experimental value, however, a weaker feature about 1 eV to lower energy (red shift) of the main peak is correctly reproduced only by using high level of theory, such as Algebraic Diagrammatic Construction (ADC); (iii) dissociation of the BA into ions is found to occur with a minimum of water molecules of n = 8; (iv) the deprotonation of BA has an influence on the computed spectrum and the energetics of the lowest energy electronic transitions; (v) the effect of the water on the spectra is much larger for the deprotonated species than for the non-dissociated acid. It was found that to reproduce experimental spectrum at pH 8.0, additional continuum representation for the extended solvent environment must be included in combination with explicit solvent molecules (n ≥ 3); (vi) salts (NaCl and CaCl2) have minimal effect on the absorption spectrum and; (vii) experimental results showed that B-band of neutral BA is not sensitive to the solvent effects whereas the effect of the water on the C-band is significant. The water effects blue-shift this band up to ∼0.2 eV. Overall, the results demonstrate the ability to further our understanding of the microscopic interpretation of the electronic structure and absorption spectra of BA in aqueous media through calculations restricted to small cluster models.

8.
Phys Chem Chem Phys ; 22(22): 12658-12670, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32458893

RESUMEN

Pyruvic acid is abundant in the atmosphere and in seawater, being a decay product of living organisms. Although very small in size (10 atoms), pyruvic acid exhibits conformational complexity in the gas phase and in solution, which is reflected in the UV spectrum. The gas phase UV spectrum of pyruvic acid differs from the spectrum of pyruvic acid in water. The main atmospherically relevant absorption peak in the gas phase is blue shifted by about 0.43 eV (40 nm difference in the peak location) in water. The origin of the blue shift has not been established thus far. This paper aims at a microscopic understanding of the absorption spectrum of pyruvic acid in aqueous media by a combined experimental and theoretical approach. 1H NMR experiments were performed to reveal the contribution of the different conformers in solution as a function of pH. Computationally, hydrates of sizes up to 5 water molecules using two different species of pyruvic acid, the neutral acid and the anionic form were considered. Vertical excitation energies using the ADC(2) method (algebraic-diagrammatic construction through second order) of these structures provide insights into the blue shift of the atmospherically relevant absorption peak. Additionally, molecular dynamics simulation on MP2 (Møller-Plesset perturbation theory) ground state of small clusters of pyruvic acid with four water molecules were calculated and used in computing the vertical excitation spectrum along the dynamics. This is found to describe very accurately the experimental spectrum. Overall, the results show that small hydrate models including the roles of both neutral and deprotonated speciated forms provide a good quantitative description and a microscopic interpretation of the experimental spectrum of pyruvic acid in aqueous solution.

9.
Phys Chem Chem Phys ; 22(11): 6478, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32129432

RESUMEN

Correction for 'Isomer-specific cryogenic ion vibrational spectroscopy of the D2 tagged Cs+(HNO3)(H2O)n=0-2 complexes: ion-driven enhancement of the acidic H-bond to water' by Sayoni Mitra et al., Phys. Chem. Chem. Phys., 2020, DOI: 10.1039/c9cp06689f.

10.
Phys Chem Chem Phys ; 22(8): 4501-4507, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32068217

RESUMEN

We report how the binary HNO3(H2O) interaction is modified upon complexation with a nearby Cs+ ion. Isomer-selective IR photodissociation spectra of the D2-tagged, ternary Cs+(HNO3)H2O cation confirms that two structural isomers are generated in the cryogenic ion source. In one of these, both HNO3 and H2O are directly coordinated to the ion, while in the other, the water molecule is attached to the OH group of the acid, which in turn binds to Cs+ with its -NO2 group. The acidic OH stretching fundamental in the latter isomer displays a ∼300 cm-1 red-shift relative to that in the neutral H-bonded van der Waals complex, HNO3(H2O). This behavior is analyzed with the aid of electronic structure calculations and discussed in the context of the increased effective acidity of HNO3 in the presence of the cation.

11.
J Phys Chem A ; 124(1): 224-228, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31829595

RESUMEN

Reactions of N2O5, in particular heterogeneous hydrolysis, play a vital role in determining the chemistry of the atmosphere. The N2O5 heterogeneous hydrolysis reaction has been the subject of extensive research for decades, yet the physicochemical details of the mechanism have not been established. In this study, we show that this reaction can occur on the surface of a pure water droplet. We compute a relevant transition state for a nano-size model system and follow its evolution in time by means of ab initio molecular dynamics. This transition state, where N2O5 has a strong ion-pair character, leads directly to HNO3. Both electrophilic and nucleophilic mechanisms take place. It is suggested that corresponding simulations for hydrolysis in the bulk are desirable.

12.
J Phys Chem A ; 124(25): 5071-5080, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32441097

RESUMEN

Recent studies have shown that pyruvic acid can produce higher-molecular-weight compounds upon irradiation in the aqueous phase. These compounds can contribute to the formation of secondary organic aerosols. There have been several previous studies on the effect of ionic strength on the photochemistry of pyruvic acid; however, few of them investigated the effects of marine relevant salts such as NaCl and CaCl2. In this study, we examine the effect of NaCl and CaCl2, namely, containing the coordinating cations Na+ and Ca2+, on the speciation, absorption properties, and photoreactivity of pyruvic acid in aqueous solutions of varying pH. NMR shows that both Ca2+ and Na+ further deprotonate pyruvic acid and decrease the diol to ketone ratio of pyruvic acid than in pure water at the same pH, especially at more acidic pH (pH less than 4). The absorption spectrum shows a strong red shift in the peak maxima for the n → π* transition of pyruvic acid in NaCl/CaCl2 solutions. This dependence is much more pronounced for divalent cations (Ca2+) compared to monovalent cations (Na+). Vertical excitation energy calculations of the anionic ketone form of pyruvic acid confirm the same red shift on the n → π* transition peak in the presence of Ca2+. In addition, the presence of NaCl/CaCl2 suppresses the photolysis rate of pyruvic acid, which could be due to the deprotonation of pyruvic acid by the cations and the lower photochemical reactivity for pyruvate, the deprotonated form.

13.
J Phys Chem A ; 124(4): 711-720, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31880456

RESUMEN

Reactions of dinitrogen pentoxide (N2O5) greatly affect the concentrations of NO3, ozone, OH radicals, methane, and more. In this work, we employ ab initio molecular dynamics and other tools of computational chemistry to explore reactions of N2O5 with anions hydrated by 12 water molecules to shed light on this important class of reactions. The ions investigated are Cl-, SO42-, ClO4-, and RCOO- (R = H, CH3, C2H5). The following main results are obtained: (i) all the reactions take place by an SN2-type mechanism, with a transition state that involves a contact ion pair (NO2+NO3-) that interacts strongly with water molecules. (ii) Reactions of a solvent-separated nitronium ion (NO2+) are not observed in any of the cases. (iii) An explanation is provided for the suppression of ClNO2 formation from N2O5 reacting with salty water when sulfate or acetate ions are present, as found in recent experiments. (iv) Formation of novel intermediate species, such as (SO4NO2-) and RCOONO2, in these reactions is predicted. The results suggest atomistic-level mechanisms for the reactions studied and may be useful for the development of improved modeling of reaction kinetics in aerosol particles.

14.
Faraday Discuss ; 217(0): 342-360, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31111128

RESUMEN

Reactions of nitrogen oxides with seawater are of major atmospheric importance, but microscopic understanding of these processes is still largely unavailable. In this paper we explore models of reactions of N2O4 with ions in water in order to provide molecular-level understanding of the processes. Presented here are studies of N2O4 interacting with two ions, SO42- and Cl-, in small water clusters. Reactions of the asymmetric conformer of N2O4 with SO42- ions in water clusters are studied via ab initio molecular dynamics (AIMD) simulations in order to unravel the microscopic mechanism of the processes and predict the timescales of different steps. Spectroscopic signatures of the reaction are proposed. The mechanisms of chloride substitution and hydrolysis of symmetric and asymmetric N2O4 are explored via intrinsic reaction coordinate (IRC) calculations. Spectroscopic calculations for relevant species suggest possible experimental signatures for the processes. The results of these model ion-N2O4 reactions in water throw light on the molecular-level mechanisms of the reactions of nitrogen oxides with seawater.

15.
J Phys Chem A ; 123(39): 8377-8384, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31538481

RESUMEN

The anharmonic frequencies of O-H, C-H, and N-H stretching modes of hydrogen-bonded glycine-H2O complexes are calculated using ab initio classical separable potential approximation. In this approach, ab initio molecular dynamic simulations are used to determine an effective classical potential for each of the normal modes of the system. The frequencies are calculated by solving the time-independent Schrödinger equation for each mode using time-averaged potentials. Three complex structures are studied, which differ in the location of the water molecule on the amino acid. Significant differences are found between the spectra of the three structures, and signatures of individual complexes are established. It is demonstrated that anharmonic effects are essential in the discrimination between different structures, while frequency differences at the harmonic level are much smaller. Intensities are also computed and found to carry information on differences between structures, but the role of anharmonicity in this is small.

16.
J Phys Chem A ; 123(34): 7384-7393, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31381345

RESUMEN

There is much current interest in materials that are made entirely or mostly of nitrogen atoms. Such materials, polynitrogens, may reveal new aspects of nitrogen chemistry, and are believed to provide a possible basis for novel energetic substances. An interesting family of such materials, in which the N5+ group appears as a cation, was prepared by K. O. Christe and co-workers. Little is known as yet on the microscopic properties of these materials. In this paper, we report theoretical calculations to predict the structure, energetic stability and decomposition dynamics of the polynitrogen molecule N5+B(N3)4-, the building block of a solid prepared by Christe, and of the dimer of this molecule. The structures are computed at the B3LYP-D3 level of DFT. ab initio molecular dynamics simulations are used to explore the thermal stability of the species and the decomposition mechanism. It is found that the N5+B(N3)4- ion-pair decomposes on a picosecond time scale at T = 200 K, with an ultrafast release of four N2 molecules, which is very exothermic. The species B(N3)3 is a product. The dimer is considerably more stable. Sensitivity of the process to temperature and to an applied force is reported. Possible applications of this material are briefly discussed.

17.
Phys Chem Chem Phys ; 20(34): 22249-22259, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30123899

RESUMEN

The effect of water on the growth of dry nano-size acid-base particles is not yet known. In this paper, we investigate the uptake of water by nano-size particles composed of methanesulfonic acid (MSA) and methylamine (MA) using a combination of quantum chemical calculations and laboratory experiments. Calculations were performed on the (MSA-MA)4 cluster as the dry nanoparticle model, which forms a pseudo-cubic structure, to which twelve water molecules were added successively. Theoretical results show that the hydrated clusters (MSA-MA)4-(H2O)n, n = 1 to 12 are thermodynamically stable. In ab initio dynamic simulations, no loss of water or significant changes of structure are seen for at least 10 picoseconds. In all the clusters studied, most of the water molecules lie on the face of the (MSA-MA)4 initial dry unit, and water is found to be incorporated inside the initial unit for n ranging from five to twelve. Sizes of hydrated clusters exceed significantly that of the dry cluster only for n ≥ 6. These theoretical results suggest that dry MSA-MA clusters cannot dissociate in small quantities of water. Calculations of hydrated cluster distributions at steady state show that the cluster compositions studied, with up to 12 water molecules, encompass all the hydrated clusters under the experimental conditions (RH ∼ 19%, 300 K). Experiments performed in a glass flow reactor showed no changes in size or number concentration when particles formed from MSA-MA were subsequently exposed to water vapor, in contrast to increases in both size and number when water was present during particle formation. Thus, the results seem to imply for both experiment and theory that growth in size of a particle due to uptake of water requires the previous presence of some level of hydration. These results illustrate the importance for atmospheric models of understanding on a molecular basis the mechanisms of particle formation in air.

18.
Phys Chem Chem Phys ; 20(36): 23717-23725, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30191926

RESUMEN

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory. The two energetically lowest FA dimer isomers were collided with a water slab at thermal and high kinetic energies up to 68kBT. Our simulations agree with recent experimental observations of nearly a complete uptake of gas-phase FA dimer: the calculated average kinetic energy of the dimers immediately after collision is 5 ± 4% of the incoming kinetic energy, which compares well with the experimental value of 10%. Simulations support the experimental observation of no delayed desorption of FA dimers following initial adsorption. Our analysis shows that the FA dimer forms hydrogen bonds with surface water molecules, where the hydrogen bond order depends on the dimer structure, such that the most stable isomer possesses fewer FA-water hydrogen bonds than the higher energy isomer. Nevertheless, even the most stable isomer can attach to the surface through one hydrogen bond despite its reduced hydrophilicity. Our simulations further show that the probability of FA dimer dissociation is increased by high collision energies, the dimer undergoes isomerization from the higher energy to the lowest energy isomer, and concerted double-proton transfer occurs between the FA monomers. Interestingly, proton transfer appears to be driven by the release of energy arising from such isomerization, which stimulates those internal vibrational degrees of freedom that overcome the barrier of a proton transfer.

19.
Phys Chem Chem Phys ; 20(38): 24894-24901, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30234204

RESUMEN

The intrinsic structure of an opioid peptide [Ala2, Leu5]-leucine enkephalin (ALE) has been investigated using first-principles based vibrational self-consistent field (VSCF) theory and cold ion spectroscopy. IR-UV double resonance spectroscopy revealed the presence of only one highly abundant conformer of the singly protonated ALE, isolated and cryogenically cooled in the gas phase. High-level quantum mechanical calculations of electronic structures in conjunction with a systematic conformational search allowed for finding a few low-energy candidate structures. In order to identify the observed structure, we computed vibrational spectra of the candidate structures and employed the theory at the semi-empirically scaled harmonic level and at the first-principles based anharmonic VSCF levels. The best match between the calculated "anharmonic" and the measured spectra appeared, indeed, for the most stable candidate. An average of two spectra calculated with different quantum mechanical potentials is proposed for the best match with experiment. The match thus validates the calculated intrinsic structure of ALE and demonstrates the predictive power of first-principles theory for solving structures of such large molecules.


Asunto(s)
Encefalina Leucina/química , Espectrofotometría Infrarroja/métodos , Modelos Moleculares , Conformación Proteica , Reproducibilidad de los Resultados
20.
Phys Chem Chem Phys ; 20(26): 17961-17976, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29926059

RESUMEN

Interactions of N2O5 with water media are of great importance in atmospheric chemistry and have been the topic of extensive research for over two decades. Nevertheless, many physical and chemical properties of N2O5 at the surface or in bulk water are unknown or not microscopically understood. This study presents extensive new results on the physical properties of N2O5 in water and at the surface of water, with a focus on their microscopic basis. The main results are obtained using ab initio molecular dynamics and calculations of a potential of mean force. These include: (1) collisions of N2O5 with water at 300 K lead to trapping at the surface for at least 20 ps and with 95% probability. (2) During that time, there is no N2O5 hydrolysis, evaporation, or entry into the bulk. (3) Charge separation between the NO2 and NO3 groups of N2O5, fluctuates significantly with time. (4) Energy accommodation of the colliding N2O5 at the surface takes place within picoseconds. (5) The binding energy of N2O5 to a nanosize amorphous ice particle at 0 K is on the order of 15 kcal mol-1 for the main surface site. N2O5 binding to the cluster is due to one weak hydrogen bond and to interactions between partial charges on the N2O5 and on water. (6) The free-energy profile was calculated for transporting N2O5 from the gas phase through the interface and into bulk water. The corresponding concentration profile exhibits a propensity for N2O5 at the aqueous surface. The free energy barrier for entry from the surface into the bulk was determined to be 1.8 kcal mol-1. These findings are used to interpret recent experiments. We conclude with implications of this study for atmospheric chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA