Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261757

RESUMEN

Plant modeling can provide a more detailed overview regarding the basis of plant development throughout the life cycle. Three-dimensional processing algorithms are rapidly expanding in plant phenotyping programmes and in decision-making for agronomic management. Several methods have already been tested, but for practical implementations the trade-off between equipment cost, computational resources needed and the fidelity and accuracy in the reconstruction of the end-details needs to be assessed and quantified. This study examined the suitability of two low-cost systems for plant reconstruction. A low-cost Structure from Motion (SfM) technique was used to create 3D models for plant crop reconstruction. In the second method, an acquisition and reconstruction algorithm using an RGB-Depth Kinect v2 sensor was tested following a similar image acquisition procedure. The information was processed to create a dense point cloud, which allowed the creation of a 3D-polygon mesh representing every scanned plant. The selected crop plants corresponded to three different crops (maize, sugar beet and sunflower) that have structural and biological differences. The parameters measured from the model were validated with ground truth data of plant height, leaf area index and plant dry biomass using regression methods. The results showed strong consistency with good correlations between the calculated values in the models and the ground truth information. Although, the values obtained were always accurately estimated, differences between the methods and among the crops were found. The SfM method showed a slightly better result with regard to the reconstruction the end-details and the accuracy of the height estimation. Although the use of the processing algorithm is relatively fast, the use of RGB-D information is faster during the creation of the 3D models. Thus, both methods demonstrated robust results and provided great potential for use in both for indoor and outdoor scenarios. Consequently, these low-cost systems for 3D modeling are suitable for several situations where there is a need for model generation and also provide a favourable time-cost relationship.


Asunto(s)
Agricultura , Productos Agrícolas , Hojas de la Planta/crecimiento & desarrollo , Algoritmos , Biomasa , Imagenología Tridimensional , Fenotipo , Verduras/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
2.
Sensors (Basel) ; 18(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400568

RESUMEN

Herbicide resistant weeds need to be identified early so that yield loss can be avoided by applying proper field management strategies. A novel chlorophyll-fluorescence-imaging sensor has been developed to conduct real-time herbicide effect evaluation. In this research, greenhouse and field experiments were conducted to calibrate the capability of the sensor in monitoring herbicide effects on different biotypes of two grass weeds (Alopecurus myosuroides, Apera spica-venti) in southwestern Germany. Herbicides with different modes of action were applied for the effect monitoring. Chlorophyll fluorescence yield of the plants was measured 3⁻15 days after treatment (DAT) using the new fluorescence sensor. Visual assessment of the weeds was carried out on 21 DAT. The results showed that the maximal PS II quantum yield (Fv/Fm) of herbicide sensitive weeds was significantly lower than the values of resistant populations in 5 DAT. The new technology was capable of quickly identifying the herbicide's effect on plants. It can be used to optimize management strategies to control herbicide resistant weeds.


Asunto(s)
Agricultura/instrumentación , Herbicidas/toxicidad , Clorofila , Fluorescencia , Malezas/efectos de los fármacos , Poaceae/efectos de los fármacos
3.
Sensors (Basel) ; 18(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271905

RESUMEN

Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.


Asunto(s)
Glycine max , Clorofila , Fluorescencia , Herbicidas , Control de Malezas
4.
Sensors (Basel) ; 15(4): 7691-707, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25831085

RESUMEN

Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%-91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide.

5.
Plants (Basel) ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124282

RESUMEN

Spot spraying can significantly reduce herbicide use while maintaining equal weed control efficacy as a broadcast application of herbicides. Several online spot-spraying systems have been developed, with sensors mounted on the sprayer or by recording the RTK-GNSS position of each crop seed. In this study, spot spraying was realized offline based on georeferenced unmanned aerial vehicle (UAV) images with high spatial resolution. Studies were conducted in four maize fields in Southwestern Germany in 2023. A randomized complete block design was used with seven treatments containing broadcast and spot applications of pre-emergence and post-emergence herbicides. Post-emergence herbicides were applied at 2-4-leaf and at 6-8-leaf stages of maize. Weed and crop density, weed control efficacy (WCE), crop losses, accuracy of weed classification in UAV images, herbicide savings and maize yield were measured and analyzed. On average, 94% of all weed plants were correctly identified in the UAV images with the automatic classifier. Spot-spraying achieved up to 86% WCE, which was equal to the broadcast herbicide treatment. Early spot spraying saved 47% of herbicides compared to the broadcast herbicide application. Maize yields in the spot-spraying plots were equal to the broadcast herbicide application plots. This study demonstrates that spot-spraying based on UAV weed maps is feasible and provides a significant reduction in herbicide use.

6.
Sensors (Basel) ; 13(5): 6254-71, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23669712

RESUMEN

Harrowing is often used to reduce weed competition, generally using a constant intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken into account. This study aimed to develop and test an algorithm to automatically adjust the harrowing intensity by varying the tine angle and number of passes. The field variability of crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density were assessed using bispectral cameras through differential images analysis. The draught force of the soil opposite to the direction of travel was measured with electronic load cell sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity levels were derived in previously implemented experiments, based on the weed control efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy inference system (LFIS). The system was evaluated in two field experiments that compared constant intensities with variable intensities inferred by the system. A higher weed density reduction could be achieved when the harrowing intensity was not kept constant along the cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly improving crop yield. A real-time intensity adjustment with this system is achievable, if the cameras are attached in the front and at the rear or sides of the harrow.


Asunto(s)
Toma de Decisiones , Hordeum/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Control de Malezas/métodos , Productos Agrícolas/crecimiento & desarrollo , Lógica Difusa , Hojas de la Planta/crecimiento & desarrollo , Reproducibilidad de los Resultados
7.
Sensors (Basel) ; 13(11): 14662-75, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24172283

RESUMEN

In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12-14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Malezas/química , Suelo/química , Zea mays/química , Agricultura/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo , Malezas/anatomía & histología , Análisis de Regresión , Zea mays/anatomía & histología
8.
Sensors (Basel) ; 12(12): 17343-57, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23443401

RESUMEN

Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were assessed by discriminant analysis. The ultrasonic readings permitted the separation between weed infested zones and non-infested areas with up to 92.8% of success. This system will potentially reduce the cost of weed detection and offers an opportunity to its use in non-selective methods for weed control.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Ultrasonido , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Ambiente , Estaciones del Año , Triticum/crecimiento & desarrollo , Control de Malezas
9.
Pest Manag Sci ; 76(1): 42-46, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31595642

RESUMEN

The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70-95% of weeds and volunteer crops in the fall-to-spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble-tillage operations and non-selective chemical weed control in the fall-to-spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry.


Asunto(s)
Malezas , Control de Malezas , Alelopatía , Productos Agrícolas , Suelo
10.
Pest Manag Sci ; 76(5): 1856-1865, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31828947

RESUMEN

BACKGROUND: Some maize post-emergence herbicides obtain their crop/weed selectivity only through the use of chemical crop safeners. Safeners improve the tolerance of maize to herbicidal active ingredients. In order to investigate the crop response to safener (cyprosulfamide) spray application and seed treatment, greenhouse and field trials were conducted on three maize development stages (2-, 4-, and 6-leaf stage). Visual estimations on crop vitality were compared to ground-based and airborne hyperspectral and multispectral sensors. RESULTS: The reduction of cyprosulfamide by 88% when applied as seed treatment did not significantly reduce maize biomass yields at the field. The crop deterioration in both trials was stronger in the cyprosulfamide seed treatments compared to the spray applications but was found to be transient in the field trial. The hyperspectral sensor and multispectral camera data correlated with R2 = 0.84 (CropSpec Vegetation Index) and R2 = 0.64 (Green Normalized Difference Vegetation Index). CONCLUSION: The sensor-based collection of crop responses to treatments enables early, quantifiable and auditor-independent assessments. In particular, the airborne multispectral imagery assessment of field experiments provides more detailed and comprehensive information than visually collected data. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Zea mays , Herbicidas , Isoxazoles , Semillas
11.
Pest Manag Sci ; 70(2): 190-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24203911

RESUMEN

Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given.


Asunto(s)
Control de Malezas/instrumentación , Imagen Óptica , Suelo
12.
Pest Manag Sci ; 70(2): 200-11, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23553904

RESUMEN

BACKGROUND: Precision experimental design uses the natural heterogeneity of agricultural fields and combines sensor technology with linear mixed models to estimate the effect of weeds, soil properties and herbicide on yield. These estimates can be used to derive economic thresholds. Three field trials are presented using the precision experimental design in winter wheat. Weed densities were determined by manual sampling and bi-spectral cameras, yield and soil properties were mapped. RESULTS: Galium aparine, other broad-leaved weeds and Alopecurus myosuroides reduced yield by 17.5, 1.2 and 12.4 kg ha(-1) plant(-1) m(2) in one trial. The determined thresholds for site-specific weed control with independently applied herbicides were 4, 48 and 12 plants m(-2), respectively. Spring drought reduced yield effects of weeds considerably in one trial, since water became yield limiting. A negative herbicide effect on the crop was negligible, except in one trial, in which the herbicide mixture tended to reduce yield by 0.6 t ha(-1). Bi-spectral cameras for weed counting were of limited use and still need improvement. Nevertheless, large weed patches were correctly identified. CONCLUSION: The current paper presents a new approach to conducting field trials and deriving decision rules for weed control in farmers' fields.


Asunto(s)
Estaciones del Año , Triticum , Control de Malezas/economía , Control de Malezas/instrumentación , Galium/efectos de los fármacos , Galium/crecimiento & desarrollo , Herbicidas/toxicidad , Matricaria/efectos de los fármacos , Matricaria/genética
13.
PLoS One ; 8(9): e74280, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086329

RESUMEN

Methylated seed oil (MSO) is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds.


Asunto(s)
Herbicidas , Aceites de Plantas/farmacología , Malezas , Pirazoles/farmacología , Semillas/química , Metilación , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA