RESUMEN
BACKGROUND: The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS: The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS: The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Neumonía , Anticuerpos de Cadena Única , Humanos , Animales , Ratones , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad MicrobianaRESUMEN
The aim of this study was to evaluate the effect and safety of N-acetylcysteine (NAC) inhalation spray in the treatment of patients with coronavirus disease 2019 (COVID-19). This randomized controlled clinical trial study was conducted on patients with COVID-19. Eligible patients (n = 250) were randomly allocated into the intervention group (routine treatment + NAC inhaler spray one puff per 12 h, for 7 days) or the control group who received routine treatment alone. Clinical features, hemodynamic, hematological, biochemical parameters and patient outcomes were assessed and compared before and after treatment. The mortality rate was significantly higher in the control group than in the intervention group (39.2% vs. 3.2%, p < 0.001). Significant differences were found between the two groups (intervention and control, respectively) for white blood cell count (6.2 vs. 7.8, p < 0.001), hemoglobin (12.3 vs. 13.3, p = 0.002), C-reactive protein (CRP: 6 vs. 11.5, p < 0.0001) and aspartate aminotransferase (AST: 32 vs. 25.5, p < 0.0001). No differences were seen for hospital length of stay (11.98 ± 3.61 vs. 11.81 ± 3.52, p = 0.814) or the requirement for intensive care unit (ICU) admission (7.2% vs. 11.2%, p = 0.274). NAC was beneficial in reducing the mortality rate in patients with COVID-19 and inflammatory parameters, and a reduction in the development of severe respiratory failure; however, it did not affect the length of hospital stay or the need for ICU admission. Data on the effectiveness of NAC for Severe Acute Respiratory Syndrome Coronavirus-2 is limited and further research is required.
Asunto(s)
Acetilcisteína , COVID-19 , Vaporizadores Orales , Humanos , Acetilcisteína/administración & dosificación , Acetilcisteína/efectos adversos , COVID-19/terapia , Tiempo de Internación , SARS-CoV-2 , Resultado del Tratamiento , Administración por Inhalación , Nebulizadores y VaporizadoresRESUMEN
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar remodeling. Although the abnormalities are primarily prompted by chronic exposure to inhaled irritants, maladjusted and self-reinforcing immune responses are significant contributors to the development and progression of the disease. The p38 isoforms are regarded as pivotal hub proteins that regulate immune and inflammatory responses in both healthy and disease states. As a result, their inhibition has been the subject of numerous recent studies exploring their therapeutic potential in COPD. MAIN BODY: We performed a systematic search based on the PRISMA guidelines to find relevant studies about P38 signaling in COPD patients. We searched the PubMed and Google Scholar databases and used "P38" AND "COPD" Mesh Terms. We applied the following inclusion criteria: (1) human, animal, ex vivo and in vitro studies; (2) original research articles; (3) published in English; and (4) focused on P38 signaling in COPD pathogenesis, progression, or treatment. We screened the titles and abstracts of the retrieved studies and assessed the full texts of the eligible studies for quality and relevance. We extracted the following data from each study: authors, year, country, sample size, study design, cell type, intervention, outcome, and main findings. We classified the studies according to the role of different cells and treatments in P38 signaling in COPD. CONCLUSION: While targeting p38 MAPK has demonstrated some therapeutic potential in COPD, its efficacy is limited. Nevertheless, combining p38 MAPK inhibitors with other anti-inflammatory steroids appears to be a promising treatment choice. Clinical trials testing various p38 MAPK inhibitors have produced mixed results, with some showing improvement in lung function and reduction in exacerbations in COPD patients. Despite these mixed results, research on p38 MAPK inhibitors is still a major area of study to develop new and more effective therapies for COPD. As our understanding of COPD evolves, we may gain a better understanding of how to utilize p38 MAPK inhibitors to treat this disease. Video Abstract.
We wanted to determine what studies have been done on how a protein called p38 affects a lung disease called COPD. COPD is a condition that makes it hard to breathe and can cause coughing, wheezing, and chest infections. p38 is a protein that helps cells to respond to stress and inflammation, but it may also play a role in causing or worsening COPD. We searched two main online databases for studies that met our criteria. We looked for studies that involved humans, studies that used animals or cells in the lab, studies that reported new findings, studies that were written in English, and studies that focused on p38 and COPD. We did not include studies that were reviews, summaries, opinions, or letters or studies that were not related to p38 or COPD. We found 361 studies that matched our criteria. We read the titles and summaries of these studies and checked the full texts for quality and relevance. We collected information from each study, such as who did it, when and where it was done, how many people were involved, what type of cells were studied, what treatment was given, what outcome was measured, and what the main results were. We grouped the studies based on the type of cells and type of treatment they studied. We found that different types of cells (such as lung cells, immune cells, and blood cells) and different types of treatment can affect how p38 works in COPD.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológicoRESUMEN
OBJECTIVE: Diagnosis of small airway disease on computed tomography (CT) scans is challenging in patients with a history of chemical warfare exposure. We developed a software package based on different methodologies to identify and quantify small airway disease in CT images. The primary aim was to identify the best automatic methodology for detecting small airway disease in CT scans of Iran-Iraq War victims of chemical warfare. METHODS: This retrospective case-control study enrolled 46 patients with a history of chemical warfare exposure and 27 controls with inspiratory/expiratory (I/E) CT scans and spirometry tests. Image data were automatically segmented, and inspiratory images were registered into the expiratory images' frame using the locally developed software. Parametric response mapping (PRM) and air trapping index (ATI) mapping were performed on the CT images. Conventional QCT methods, including expiratory/inspiratory mean lung attenuation (E/I MLA) ratio, normal density E/I (ND E/I) MLA ratio, attenuation volume Index (AVI), %low attenuation areas (LAA) < -856 in exhale scans, and %LAA < -950 in inhale scans were also computed. QCT measurements were correlated with spirometry results and compared across the two study groups. RESULTS: The correlation analysis showed a significant negative relationship between three air trapping (AT) measurements (PRM, ATI, and %LAAExp < -856) and spirometry parameters (Fev1, Fvc, Fev1/Fvc, and MMEF). Moreover, %LAAExp < -856 had the highest significant negative correlation with Fev1/Fvc (r = -0.643, P-value < 0.001). Three AT measurements demonstrated a significant difference between the study groups. The E/I ratio was also significantly different between the two groups (P-value < 0.001). Binary logistic regression models showed PRMFsad, %LAAExp < -856, and ATI as significant and strong predictors of the study outcome. Optimal cut-points for PRMFsad = 19%, %LAAExp < -856 = 23%, and ATI = 27% were identified to classify the participants into two groups with high accuracy. CONCLUSION: QCT methods, including PRM, ATI, and %LAAExp < -856 can greatly advance the identification and quantification of SAD in chemical warfare victims. The results should be verified in well-designed prospective studies involving a large population.
Asunto(s)
Guerra Química , Pulmón , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Estudios Prospectivos , Irán , Irak , Tomografía Computarizada por Rayos X/métodos , Programas Informáticos , ComputadoresRESUMEN
BACKGROUND: Sulfur Mustard (SM) is a chemical warfare agent that has serious short-term and long-term effects on health. Thousands of Iranians were exposed to SM during the eight-year Iran-Iraq conflict and permanently injured while the socioeconomic imbalance in their healthcare utilization (HCU) and health expenditures remains. This study aims to describe the HCU of SM-exposed survivors in Iran from 2018 to 2021; identify high-risk areas; and apply an inequality analysis of utilization regarding the socioeconomic groups to reduce the gap by controlling crucial determinants. METHODS: From Oct 2018 to June 2021, the Veterans and Martyrs Affairs Foundation (VMAF) recorded 58,888 living war survivors with eye, lung, and skin ailments. After cleaning the dataset and removing junk codes, we defined 11 HCU-related variables and predicted the HCU for the upcoming years using Bayesian spatio-temporal models. We explored the association of individual-level HCU and determinants using a Zero-inflated Poisson (ZIP) model and also investigated the provincial hotspots using Local Moran's I. RESULTS: With ≥ 90% confidence, we discovered eleven HCU clusters in Iran. We discovered that the expected number of HCU 1) rises with increasing age, severity of complications in survivors' eyes and lungs, wealth index (WI), life expectancy (LE), and hospital beds ratio; and 2) decreases with growing skin complications, years of schooling (YOS), urbanization, number of hospital beds, length of stay (LOS) in bed, and bed occupancy rate (BOR). The concentration index (CInd) of HCU and associated costs in age and wealth groups were all positive, however, the signs of CInd values for HCU and total cost in YOS, urbanization, LOS, and Hospital beds ratio groups were not identical. CONCLUSIONS: We observed a tendency of pro-rich inequity and also higher HCU and expenditures for the elderly population. Finally, health policies should tackle potential socioeconomic inequities to reduce HCU gaps in the SM-exposed population. Also, policymakers should allocate the resources according to the hotspots of HCU.
Asunto(s)
Disparidades en Atención de Salud , Gas Mostaza , Factores Socioeconómicos , Humanos , Teorema de Bayes , Gastos en Salud , Accesibilidad a los Servicios de Salud , Irán/epidemiología , Gas Mostaza/efectos adversos , Análisis Espacio-TemporalRESUMEN
BACKGROUND: Complementary ozone therapy has been identified as a revolutionary medical technique for a number of goals and ailments. At the present, it has been shown that ozone has medicinal qualities, such as antibacterial, antifungal, and antiparasitic properties. Coronavirus (SARS-CoV-2) is quickly spread over the globe. Cytokine storms and oxidative stress seem to play a substantial role in the most of acute attacks of the disease. The aim of this research was to assess the therapeutic advantages of complementary ozone therapy on the cytokine profile and antioxidant status in COVID-19 patients. METHODS: The statistical sample of this study included two hundred patients with COVID-19. One hundred COVID-19 patients (treatment group) received 240 ml of the patient's blood and an equal volume of O2/O3 gas at a concentration of 35-50 µg/ml daily, which gradually increased in concentration, and were kept for 5-10 days and one hundred patients (control group) received standard treatment. The secretion levels of IL-6, TNF-α, IL-1ß, IL-10 cytokines, SOD, CAT and GPx were compared between control patients (standard treatment) and standard treatment plus intervention (ozone) before and after treatment. RESULTS: The findings indicated a significant decrease in the level of IL-6, TNF-α, IL-1ß in group receiving complementary ozone therapy in compared with control group. Furthermore, a significant increase was found in the level of IL-10 cytokine. Moreover, SOD, CAT and GPx levels revealed a significant increase in complementary ozone therapy group compared to control group. CONCLUSIONS: Our results revealed that complementary ozone therapy can be used as a medicinal complementary therapy to reduce and control inflammatory cytokines and oxidative stress status in patients with COVID-19 as revealed its antioxidant and anti-inflammatory effects.
Asunto(s)
COVID-19 , Ozono , Humanos , COVID-19/terapia , Antioxidantes/uso terapéutico , SARS-CoV-2 , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Ozono/uso terapéutico , Citocinas , Superóxido DismutasaRESUMEN
BACKGROUND: Staphylococcal superantigens are virulence factors that help the pathogen escape the immune system and develop an infection. Toxic shock syndrome toxin (TSST)-1 is one of the most studied superantigens whose role in toxic shock syndrome and some particular disorders have been demonstrated. Inhibiting TSST-1 production with antibiotics and targeting TSST-1 with monoclonal antibodies might be one of the best strategies to prevent TSST-1-induced cytokines storm followed by lethality. RESULTS: A novel single-chain variable fragment (scFv), MS473, against TSST-1 was identified by selecting an scFv phage library on the TSST-1 protein. The MS473 scFv showed high affinity and specificity for TSST-1. Moreover, MS473 could significantly prevent TSST-1-induced mitogenicity (the IC50 value: 1.5 µM) and cytokine production. CONCLUSION: Using traditional antibiotics with an anti-TSST-1 scFv as a safe and effective agent leads to deleting the infection source and preventing the detrimental effects of the toxin disseminated into the whole body.
Asunto(s)
Anticuerpos de Cadena Única , Humanos , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/metabolismo , Staphylococcus aureus , Superantígenos/metabolismo , Superantígenos/farmacología , Enterotoxinas , Citocinas/metabolismo , Antibacterianos/farmacologíaRESUMEN
Understanding the molecular and cellular mechanisms involved in the pathogenesis of ocular injured induced by mustard gas can help better identify complications and discover appropriate therapies. This study aimed to analyze the proteomics of tears of chemical warfare victims with mustard gas ocular injuries and compare it with healthy individuals. In this case-control research, 10 mustard gas victims with long-term ocular difficulties (Chronic) were included in the patient group, while 10 healthy persons who were age and sex matched to the patients were included in the control group. Schirmer strips were used to collect the tears of the participants. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the tear protein profile, and statistical bioinformatics methods were used to identify the differently expressed proteins. 24 proteins had different expressions between the two groups. Among these 24 proteins, 8 proteins had increased expression in veterans' tears, while the remaining 16 proteins had decreased expression. Reactome pathways were used to look at proteins with various expressions, and 13 proteins were found to be engaged in the immune system, 9 of which were effective in the innate immune system, and 5 proteins were effective in the complement cascade. Ocular mustard gas exposure may cause a compromised immune system on the eye's surface, exposing the cornea to external and endogenous infections, and eventually causing corneal opacity and reduced vision.
RESUMEN
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterised by airway inflammation and progressive obstruction of the lung airflow. Current pharmacological treatments include bronchodilators, alone or in combination with steroids, or other anti-inflammatory agents, which have only partially contributed to the inhibition of disease progression and mortality. Therefore, further research unravelling the underlying mechanisms is necessary to develop new anti-COPD drugs with both lower toxicity and higher efficacy. Extrinsic signalling pathways play crucial roles in COPD development and exacerbations. In particular, phosphoinositide 3-kinase (PI3K) signalling has recently been shown to be a major driver of the COPD phenotype. Therefore, several small-molecule inhibitors have been identified to block the hyperactivation of this signalling pathway in COPD patients, many of them showing promising outcomes in both preclinical animal models of COPD and human clinical trials. In this review, we discuss the critically important roles played by hyperactivated PI3K signalling in the pathogenesis of COPD. We also critically review current therapeutics based on PI3K inhibition, and provide suggestions focusing on PI3K signalling for the further improvement of the COPD phenotype. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Fosfatidilinositol 3-Quinasa/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Animales , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
According to World Health Organization reports, large numbers of people around the globe have been infected or died for Covid-19 due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Researchers are still trying to find a rapid and accurate diagnostic method for revealing infected people by low viral load with the overriding goal of effective diagnostic management. Monitoring the body metabolic changes is known as an effective and inexpensive approach for the evaluation of the infected people. Here, an optical sniffer is introduced to detect exhaled breath metabolites of patients with Covid-19 (60 samples), healthy humans (55 samples), and cured people (15 samples), providing a unique color pattern for differentiation between the studied samples. The sniffer device is installed on a thin face mask, and directly exposed to the exhaled breath stream. The interactions occurring between the volatile compounds and sensing components such as porphyrazines, modified organic dyes, porphyrins, inorganic complexes, and gold nanoparticles allowing for the change of the color, thus being tracked as the sensor responses. The assay accuracy for the differentiation between patient, healthy and cured samples is calculated to be in the range of 80%-84%. The changes in the color of the sensor have a linear correlation with the disease severity and viral load evaluated by rRT-PCR method. Interestingly, comorbidities such as kidney, lung, and diabetes diseases as well as being a smoker may be diagnosed by the proposed method. As a powerful detection device, the breath sniffer can replace the conventional rapid test kits for medical applications.
RESUMEN
During Iraq-Iran conflict, chemical weapons, particularly SM gas, were used numerous times, whose aftereffects are still present. This study aimed to compare serum proteome in the chronic ML (n = 10) and HC (n = 10). TMT label-based quantitative proteomics was used to examine serums from two groups. Among total significant proteins, 14 proteins were upregulated (log2 ≥ FC 0.5, p 0.05), and 6 proteins were downregulated (log2 ≤ FC - 0.5, p 0.05). By helping PPI network, and EA, 11 main pathways connected to significantly different protein expression levels were discovered, including inflammatory and cell adhesion signaling pathways. It may be deduced that the wounded organs of exposed individuals experience poor repair cycles of cell degeneration and regeneration because certain repair signals were elevated while other structural and adhesion molecules were downregulated. The systems biology approach can help enhance our basic knowledge of biological processes, and contribute to a deeper understanding of pathophysiological mechanisms, as well as the identification of potential biomarkers of disease.
Asunto(s)
Proteómica , Biología de Sistemas , Humanos , Planta de la Mostaza , Progresión de la Enfermedad , PulmónRESUMEN
BACKGROUND: Mustard gas (MG) is one of the most widely used chemical weapons in the past century. However, little information exists concerning long-term mortality from MG exposure. In this study, we investigated mortality rate among civilian people exposed to MG during Iran-Iraq war in Sardasht in Iran after 32 years. METHODS: In this retrospective cohort study, data of people exposed to MG in Sardasht in 1987 were extracted from the Veterans and Martyr Affair Foundation of Iran up to March 20, 2019. Mortality rate, cumulative mortality and standardized mortality ratio with 95% confidence interval were calculated to explain mortality in the cohort, and then compared with general Iranian population. Cox regression analysis was used to indicate factor affecting the risk of death in the cohort. RESULTS: Out of 1,203 exposed people at the beginning of the period, 148 people died by the end of the study, with an average age of 66.42 at the time of death. Total person-years of the people up to end of the study were 38,198.63 and mortality rate was equal to 387 per 100,000 persons-years. Total number of observed deaths was less than expected death and the all-cause standardized mortality ratio (SMR) was determined as 0.680 (95% CI: 0.574 - 0.798). Cause-specific SMR showed that observed death due to respiratory diseases was higher than expected (SMR: 1.75) (95% CI: 1.145 - 2.569). The results of univariate and multivariate cox regression analysis showed that increasing age and having severe late complications in lung were associated with increased risk of death among people in the cohort. CONCLUSION: In general, this result indicated that acute exposure to MG, even without wearing protective clothing and masks, could not increase all-cause mortality after 32 years if accompanied by special and ongoing care for those exposed.
Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Anciano , Sustancias para la Guerra Química/efectos adversos , Estudios de Cohortes , Humanos , Irán/epidemiología , Irak , Gas Mostaza/efectos adversos , Estudios RetrospectivosRESUMEN
A sensitive biosensor for the detection of miR-141 has been constructed. The DNA-biosensor is prepared by first immobilizing the thiolated methylene blue-labeled hairpin capture probe (MB-HCP) on two-layer nanocomposite film graphene oxide-chitosan@ polyvinylpyrrolidone-gold nanourchin modified glassy carbon electrode. We used the hematoxylin as an electrochemical auxiliary indicator in the second stage to recognize DNA hybridization via the square wave voltammetry (SWV) responses that record the accumulated hematoxylin on electrode surfaces. The morphology and chemical composition of nanocomposite was characterized using TEM, FE-SEM, and FT-IR techniques. The preparation stages of the DNA-biosensor were screened by electrochemical impedance spectroscopy and cyclic voltammetry. The proposed DNA-biosensor can distinguish miR-141 from a non-complementary and mismatch sequence. A detection limit of 0.94 fM and a linear range of 2.0 -5.0 × 105 fM were obtained using SWV for miR-141 detection. The working potential for methylene blue and hematoxylin was -0.28 and + 0.15 V vs. Ag/AgCl, respectively. The developed biosensor can be successfully used in the early detection of non-small cell lung cancer (NSCLC) by directly measuring miR-141 in human plasma samples. This novel DNA-biosensor is of promise in early sensitive clinical diagnosis of cancers with miR-141 as its biomarker.
Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Técnicas Biosensibles/métodos , ADN , Hematoxilina , Humanos , Azul de Metileno/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
A colorimetric sensor array designed on a paper substrate with a microfluidic structure has been developed. This array is capable of detecting COVID-19 disease by tracking metabolites of urine samples. In order to determine minor metabolic changes, various colorimetric receptors consisting of gold and silver nanoparticles, metalloporphyrins, metal ion complexes, and pH-sensitive indicators are used in the array structure. By injecting a small volume of the urine sample, the color pattern of the sensor changes after 7 min, which can be observed visually. The color changes of the receptors (recorded by a scanner) are subsequently calculated by image analysis software and displayed as a color difference map. This study has been performed on 130 volunteers, including 60 patients infected by COVID-19, 55 healthy controls, and 15 cured individuals. The resulting array provides a fingerprint response for each category due to the differences in the metabolic profile of the urine sample. The principal component analysis-discriminant analysis confirms that the assay sensitivity to the correctly detected patient, healthy, and cured participants is equal to 73.3%, 74.5%, and 66.6%, respectively. Apart from COVID-19, other diseases such as chronic kidney disease, liver disorder, and diabetes may be detectable by the proposed sensor. However, this performance of the sensor must be tested in the studies with a larger sample size. These results show the possible feasibility of the sensor as a suitable alternative to costly and time-consuming standard methods for rapid detection and control of viral and bacterial infectious diseases and metabolic disorders.
Asunto(s)
COVID-19 , Nanopartículas del Metal , COVID-19/diagnóstico , Colorimetría/métodos , Humanos , Nanopartículas del Metal/química , Microfluídica , Plata/químicaRESUMEN
Today, the field of health is not limited to physical and mental health, but is related to all aspects of life, including spirituality. Spiritual health is so important that it is suggested as the fourth dimension of health, and in the near future, it will form part of the definition of health by the WHO. According to research in clinical psychology, in addition to spiritual health, another important issue in most psychotherapy theories is the issue of thinking. Given the importance of health and thinking, so far, no model has been presented in the field of the relationship between "thinking and health". So, the purpose of the present study is introducing a new model of healthy thinking based on human soul faculties. In this study, qualitative content analysis method has been used. Indicators of sensory and intellectual thinking have been noted within research results, which are the main components of the new model of thinking. In this type of thinking model, it is argued that all human beings have powers within them that can grow, which are referred to as the faculties of the soul. The level of thinking of individuals is determined by the level of each person's soul faculties. The lowest level is sensory perception and the highest level is intellectual perception. The more a person grows from the level of sensory thinking to the level of intellectual thinking, the sources of thought error decrease and the better the health of the thinking. Also, those who have a level of intellectual thinking have a higher level of spiritual health and the lifestyle of these people is health-oriented. This is a philosophical-psychological model in which indicators of sensory thinking and intellectual deviation have been extracted from theories and texts of psychology and philosophy. The results of this study can be used in psychotherapy because research has shown that thinking, especially healthy thinking, has a very effective role in mental health and a healthy lifestyle as well as treatment of disorders.
Asunto(s)
Psicología Clínica , Humanos , Islamismo , Psicoterapia , Religión y Psicología , EspiritualidadRESUMEN
Background: Lower respiratory tract infections, chronic obstructive pulmonary disease (COPD), tuberculosis, and lung cancer are among the leading 10 causes of death worldwide. The Board of Respiratory Diseases Research Network (RDRN), a sub-committee of the Iranian Non-Communicable Diseases Committee (INCDC) is particularly concerned that there should be a coordinated National strategy to address the burden caused by chronic respiratory diseases. Methods: Iranian Ministry of Health and Medical Education (MoHME) has decided to give promotion to the establishment of research networks and use them as the milestones for research management, particularly for the national health priorities. Results: National Service Framework (NSF), which was designed for Chronic Respiratory Diseases, is one of the main outcomes of the chronic respiratory diseases sub-committee of INCDC. The main seven strategies were represented by the Steering Committee in 2010 for a period of 10 years. Successful development and implementation of our goals provide the CRDs sub-committee of INCDC with the opportunity to develop a paradigm to prevent chronic respiratory diseases. Conclusion: A stronger national plan for controlling chronic respiratory diseases will ensure stronger advocacy to support respiratory health at national, sub-national, and regional levels.
RESUMEN
COVID-19 can present with a variety of clinical features, ranging from asymptomatic or mild respiratory symptoms to fulminant acute respiratory distress syndrome (ARDS) depending on the host's immune responses and the extent of the associated pathologies. This implies that several measures need to be taken to limit severely impairing symptoms caused by viral-induced pathology in vital organs. Opioids are most exploited for their analgesic effects but their usage in the palliation of dyspnoea, immunomodulation and lysosomotropism may represent potential usages of opioids in COVID-19. Here, we describe the mechanisms involved in each of these potential usages, highlighting the benefits of using opioids in the treatment of ARDS from SARS-CoV-2 infection.
Asunto(s)
Analgésicos Opioides/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/etiología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Analgésicos Opioides/administración & dosificación , COVID-19/complicaciones , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/virología , Disnea/tratamiento farmacológico , Disnea/etiología , Humanos , Inmunomodulación/efectos de los fármacos , Inmunomodulación/fisiología , Lisosomas/efectos de los fármacos , Receptores Opioides/inmunologíaRESUMEN
BACKGROUND: We performed a multicenter, randomized open-label trial in patients with moderate to severe Covid-19 treated with a range of possible treatment regimens. METHODS: Patients were randomly assigned to one of three regimen groups at a ratio of 1:1:1. The primary outcome of this study was admission to the intensive care unit. Secondary outcomes were intubation, in-hospital mortality, time to clinical recovery, and length of hospital stay (LOS). Between April 13 and August 9, 2020, a total of 336 patients were randomly assigned to receive one of the 3 treatment regimens including group I (hydroxychloroquine stat, prednisolone, azithromycin and naproxen; 120 patients), group II (hydroxychloroquine stat, azithromycin and naproxen; 116 patients), and group III (hydroxychloroquine and lopinavir/ritonavir (116 patients). The mean LOS in patients receiving prednisolone was 5.5 in the modified intention-to-treat (mITT) population and 4.4 days in the per-protocol (PP) population compared with 6.4 days (mITT population) and 5.8 days (PP population) in patients treated with Lopinavir/Ritonavir. RESULTS: The mean LOS was significantly lower in the mITT and PP populations who received prednisolone compared with populations treated with Lopinavir/Ritonavir (p = 0.028; p = 0.0007). We observed no significant differences in the number of deaths, ICU admission, and need for mechanical ventilation between the Modified ITT and per-protocol populations treated with prednisolone and Lopinavir/Ritonavir, although these outcomes were better in the arm treated with prednisolone. The time to clinical recovery was similar in the modified ITT and per-protocol populations treated with prednisolone, lopinavir/ritonavir, and azithromycin (P = 0.335; P = 0.055; p = 0.291; p = 0.098). CONCLUSION: The results of the present study show that therapeutic regimen (regimen I) with low dose prednisolone was superior to other regimens in shortening the length of hospital stay in patients with moderate to severe COVID-19. The steroid sparing effect may be utilized to increase the effectiveness of corticosteroids in the management of diabetic patients by decreasing the dosage.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glucocorticoides/uso terapéutico , Prednisolona/uso terapéutico , Adulto , Anciano , Antivirales/uso terapéutico , COVID-19/diagnóstico , COVID-19/mortalidad , COVID-19/virología , Quimioterapia Combinada , Femenino , Glucocorticoides/efectos adversos , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Intubación Intratraqueal , Irán , Tiempo de Internación , Masculino , Persona de Mediana Edad , Prednisolona/efectos adversos , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del TratamientoRESUMEN
Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) chaperone that has been shown that is overexpressed in cancer cells. Overexpression of GRP78 on cancer cells makes this molecule a suitable candidate for cancer detection and targeted therapy. VHH is the binding fragment of camelid heavy-chain antibodies also known as "nanobody." The aim of this study is to isolate and produce a new recombinant nanobody using phage display technique to detect cancer cells. Using the c-terminal domain of GRP78 (CGRP) as an antigen, four rounds of biopanning were performed, and high-affinity binders were selected by ELISA. Their affinity and functionality were characterized by surface plasmon resonance (SPR) cell ELISA and immunocytochemistry. A unique nanobody named V80 was purified. ELISA and SPR showed that this antibody had high specificity and affinity to the GRP78. Immunofluorescence analysis showed that V80 could specifically bind to the HepG2 and A549 cancer cell lines. This novel recombinant nanobody could bind to the cell surface of different cancer cells. After further evaluation, this nanobody can be used as a new tool for cancer detection and tumor therapy.
Asunto(s)
Antineoplásicos Inmunológicos/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Proteínas de Choque Térmico/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Anticuerpos de Dominio Único/inmunología , Células A549 , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Células Hep G2 , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Anticuerpos de Dominio Único/genéticaRESUMEN
Interaction between a healthy microbiome and the immune system leads to body homeostasis, as dysbiosis in microbiome content and loss of diversity may result in disease development. Due to the ability of probiotics to help and modify microbiome constitution, probiotics are now widely used for the prevention and treatment of different gastrointestinal, inflammatory, and, more recently, respiratory diseases. In this regard, chronic respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma and allergic rhinitis are among the most common and complicated respiratory diseases with no specific treatment until now. Accordingly, many studies have evaluated the therapeutic efficacy of probiotic administration (mostly via the oral route and much lesser nasal route) on chronic respiratory diseases. We tried to summarise and evaluate these studies to give a perspective of probiotic therapy via both the oral and nasal routes for respiratory infections (in general) and chronic respiratory diseases (specifically). We finally concluded that probiotics might be useful for allergic diseases. For asthmatic patients, probiotics can modulate serum cytokines and IgE and decrease eosinophilia, but with no significant reduction in clinical symptoms. For COPD, only limited studies were found with uncertain clinical efficacy. For intranasal administration, although some studies propose more efficiency than the oral route, more clinical evaluations are warranted.