Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 57(20): 12827-12835, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30256100

RESUMEN

It has recently been reported that the ordered aeschynite-type polar ( Pna21) magnets RFeWO6 (R = Eu, Tb, Dy, Y) exhibit type II multiferroic properties below TN ∼ 15-18 K. Herein, we report a comprehensive investigation of the isostructural oxide DyCrWO6 and compare the results with those of DyFeWO6. The cation-ordered oxide DyCrWO6 crystallizes in the same polar orthorhombic structure and undergoes antiferromagnetic ordering at TN = 25 K. Contrary to DyFeWO6, only a very weak dielectric anomaly and magnetodielectric effects are observed at the Néel temperature and, more importantly, there is no induced polarization at TN. Furthermore, analysis of the low-temperature neutron diffraction data reveals a collinear arrangement of Cr spins but a noncollinear Dy-spin configuration due to single-ion anisotropy. We suggest that the collinear arrangement of Cr spins may be responsible for the absence of electric polarization in DyCrWO6. A temperature-induced magnetization reversal and magnetocaloric effects are observed at low temperatures.

2.
Nat Commun ; 14(1): 5174, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620350

RESUMEN

Magnetization reversal in ferro- and ferrimagnets is a well-known archetype of non-equilibrium processes, where the volume fractions of the oppositely magnetized domains vary and perfectly compensate each other at the coercive magnetic field. Here, we report on a fundamentally new pathway for magnetization reversal that is mediated by an antiferromagnetic state. Consequently, an atomic-scale compensation of the magnetization is realized at the coercive field, instead of the mesoscopic or macroscopic domain cancellation in canonical reversal processes. We demonstrate this unusual magnetization reversal on the Zn-doped polar magnet Fe2Mo3O8. Hidden behind the conventional ferrimagnetic hysteresis loop, the surprising emergence of the antiferromagnetic phase at the coercive fields is disclosed by a sharp peak in the field-dependence of the electric polarization. In addition, at the magnetization reversal our THz spectroscopy studies reveal the reappearance of the magnon mode that is only present in the pristine antiferromagnetic state. According to our microscopic calculations, this unusual process is governed by the dominant intralayer coupling, strong easy-axis anisotropy and spin fluctuations, which result in a complex interplay between the ferrimagnetic and antiferromagnetic phases. Such antiferro-state-mediated reversal processes offer novel concepts for magnetization control, and may also emerge for other ferroic orders.

3.
J Phys Condens Matter ; 30(24): 245802, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29726840

RESUMEN

We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO4. This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe3+ moments, which do not participate in the long-range ordering.

4.
J Phys Chem Lett ; 7(13): 2412-9, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27282976

RESUMEN

In view of the continued controversy concerning the polar/nonpolar nature of the hybrid perovskite system, CH3NH3PbI3, we report the first investigation of a time-resolved pump-probe measurement of the second harmonic generation efficiency as well as using its more traditional form as a sensitive probe of the absence/presence of the center of inversion in the system both in its excited and ground states, respectively. Our results clearly show that SHG efficiency, if nonzero, is below the limit of detection, strongly indicative of a nonpolar or centrosymmetric structure. Our results on the same samples, based on temperature dependent single crystal X-ray diffraction and P-E loop measurements, are entirely consistent with the above conclusion of a centrosymmetric structure for this compound in all three phases, namely the high temperature cubic phase, the intermediate temperature tetragonal phase and the low temperature orthorhombic phase. It is important to note that all our experimental probes are volume averaging and performed on bulk materials, suggesting that basic material properties of CH3NH3PbI3 are consistent with a centrosymmetric, nonpolar structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA