Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451103

RESUMEN

Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1, BCL2, FZD1, GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors "CTOS" (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Receptores de Hialuranos/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Sistemas CRISPR-Cas , Diferenciación Celular , Autorrenovación de las Células/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Resistencia a Antineoplásicos/genética , Fluorouracilo/uso terapéutico , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Receptores de Hialuranos/metabolismo , Inmunofenotipificación , Leucovorina/uso terapéutico , Compuestos Organoplatinos/uso terapéutico , Transducción de Señal
2.
J Biol Chem ; 292(25): 10465-10489, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28389562

RESUMEN

The appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype. Increased hyaluronan synthesis and CD44 expression have been detected in numerous fibrotic organs. Previously, we found that the TGFß1/CD44V6 pathway is important in lung myofibroblast collagen-1 and α-smooth-muscle actin synthesis. Because increased EGR1 (early growth response-1) expression has been shown to appear very early and nearly coincident with the expression of CD44V6 found after TGFß1 treatment, we investigated the mechanism(s) of regulation of CD44V6 expression in lung fibroblasts by TGFß1. TGFß1-mediated CD44V6 up-regulation was initiated through EGR1 via ERK-regulated transcriptional activation. We showed that TGFß1-induced CD44V6 expression is through EGR1-mediated AP-1 (activator protein-1) activity and that the EGR1- and AP-1-binding sites in the CD44v6 promoter account for its responsiveness to TGFß1 in lung fibroblasts. We also identified a positive-feedback loop in which ERK/EGR1 signaling promotes CD44V6 splicing and found that CD44V6 then sustains ERK signaling, which is important for AP-1 activity in lung fibroblasts. Furthermore, we identified that HAS2-produced hyaluronan is required for CD44V6 and TGFßRI co-localization and subsequent CD44V6/ERK1/EGR1 signaling. These results demonstrate a novel positive-feedback loop that links the myofibroblast phenotype to TGFß1-stimulated CD44V6/ERK/EGR1 signaling.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Receptores de Hialuranos/biosíntesis , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Regulación de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Hialuronano Sintasas , Ácido Hialurónico/biosíntesis , Pulmón/patología , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología
3.
J Biol Chem ; 292(25): 10490-10519, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28389561

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive clinical syndrome of fatal outcome. The lack of information about the signaling pathways that sustain fibrosis and the myofibroblast phenotype has prevented the development of targeted therapies for IPF. Our previous study showed that isolated fibrogenic lung fibroblasts have high endogenous levels of the hyaluronan receptor, CD44V6 (CD44 variant containing exon 6), which enhances the TGFß1 autocrine signaling and induces fibroblasts to transdifferentiate into myofibroblasts. NADPH oxidase 4 (NOX4) enzyme, which catalyzes the reduction of O2 to hydrogen peroxide (H2O2), has been implicated in the cardiac and lung myofibroblast phenotype. However, whether CD44V6 regulates NOX4 to mediate tissue repair and fibrogenesis is not well-defined. The present study assessed the mechanism of how TGF-ß-1-induced CD44V6 regulates the NOX4/reactive oxygen species (ROS) signaling that mediates the myofibroblast differentiation. Specifically, we found that NOX4/ROS regulates hyaluronan synthesis and the transcription of CD44V6 via an effect upon AP-1 activity. Further, CD44V6 is part of a positive-feedback loop with TGFß1/TGFßRI signaling that acts to increase NOX4/ROS production, which is required for myofibroblast differentiation, myofibroblast differentiation, myofibroblast extracellular matrix production, myofibroblast invasion, and myofibroblast contractility. Both NOX4 and CD44v6 are up-regulated in the lungs of mice subjected to experimental lung injury and in cases of human IPF. Genetic (CD44v6 shRNA) or a small molecule inhibitor (CD44v6 peptide) targeting of CD44v6 abrogates fibrogenesis in murine models of lung injury. These studies support a function for CD44V6 in lung fibrosis and offer proof of concept for therapeutic targeting of CD44V6 in lung fibrosis disorders.


Asunto(s)
Comunicación Autocrina , Receptores de Hialuranos/biosíntesis , Fibrosis Pulmonar Idiopática/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Receptores de Hialuranos/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Miofibroblastos/patología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta1/genética
4.
Development ; 140(10): 2172-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23578931

RESUMEN

The discovery of small non-coding microRNAs has revealed novel mechanisms of post-translational regulation of gene expression, the implications of which are still incompletely understood. We focused on microRNA 21 (miR-21), which is expressed in cardiac valve endothelium during development, in order to better understand its mechanistic role in cardiac valve development. Using a combination of in vivo gene knockdown in zebrafish and in vitro assays in human cells, we show that miR-21 is necessary for proper development of the atrioventricular valve (AV). We identify pdcd4b as a relevant in vivo target of miR-21 and show that protection of pdcd4b from miR-21 binding results in failure of AV development. In vitro experiments using human pulmonic valve endothelial cells demonstrate that miR-21 overexpression augments endothelial cell migration. PDCD4 knockdown alone was sufficient to enhance endothelial cell migration. These results demonstrate that miR-21 plays a necessary role in cardiac valvulogenesis, in large part due to an obligatory downregulation of PDCD4.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Válvulas Cardíacas/embriología , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular , Cruzamientos Genéticos , Células Endoteliales/citología , Humanos , Ratones , Factores de Tiempo , Pez Cebra
5.
J Biol Chem ; 289(12): 8545-61, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24469446

RESUMEN

Periostin (PN), a novel fasciclin-related matricellular protein, has been implicated in cardiac development and postnatal remodeling, but the mechanism remains unknown. We examined the role of PN in mediating intracellular kinase activation for atrioventricular valve morphogenesis using well defined explant cultures, gene transfection systems, and Western blotting. The results show that valve progenitor (cushion) cells secrete PN into the extracellular matrix, where it can bind to INTEGRINs and activate INTEGRIN/focal adhesion kinase signaling pathways and downstream kinases, PI3K/AKT and ERK. Functional assays with prevalvular progenitor cells showed that activating these signaling pathways promoted adhesion, migration, and anti-apoptosis. Through activation of PI3K/ERK, PN directly enhanced collagen expression. Comparing PN-null to WT mice also revealed that expression of hyaluronan (HA) and activation of hyaluronan synthase-2 (Has2) are also enhanced upon PN/INTEGRIN/focal adhesion kinase-mediated activation of PI3K and/or ERK, an effect confirmed by the reduction of HA synthase-2 in PN-null mice. We also identified in valve progenitor cells a potential autocrine signaling feedback loop between PN and HA through PI3K and/or ERK. Finally, in a three-dimensional assay to simulate normal valve maturation in vitro, PN promoted collagen compaction in a kinase-dependent fashion. In summary, this study provides the first direct evidence that PN can act to stimulate a valvulogenic signaling pathway.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Válvulas Cardíacas/embriología , Ácido Hialurónico/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Movimiento Celular , Proliferación Celular , Células Cultivadas , Embrión de Pollo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Eliminación de Gen , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Integrinas/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ovinos
6.
J Biol Chem ; 289(11): 7856-72, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24324260

RESUMEN

The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-ß1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-ß1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-ß1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-ß1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-ß1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-ß1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-ß1 signaling and the potential modulating influence of HGF on TGF-ß1-induced CD44v6-dependent fibroblast function in ILD fibrosis.


Asunto(s)
Receptores de Hialuranos/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Fibrosis Pulmonar/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Comunicación Autocrina , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Medios de Cultivo/química , Ensayo de Inmunoadsorción Enzimática , Femenino , Fibroblastos/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Bioorg Med Chem Lett ; 24(1): 317-24, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24295787

RESUMEN

Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Ciclooxigenasa 2/metabolismo , Hidrazonas/farmacología , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HT29 , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Inhibidores de la Lipooxigenasa/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
8.
Med Chem Res ; 23(8): 3836-3851, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25013352

RESUMEN

Inflammatory pathway plays an important role in tumor cell progression of colorectal cancers. Although colon cancer is considered as one of the leading causes of death worldwide, very few drugs are available for its effective treatment. Many studies have examined the effects of specific COX-2 and 5-LOX inhibitors on human colorectal cancer, but the role of isothiocyanates (ITSCs) as COX-LOX dual inhibitors engaged in hyaluronan-CD44 interaction has not been studied. In the present work, we report series of ITSC analogs incorporating bioisosteric thiosemicarbazone moiety. These inhibitors are effective against panel of human colon cancer cell lines including COX-2 positive HCA-7, HT-29 cells lines, and hyaluronan synthase-2 (Has2) enzyme over-expressing transformed intestinal epithelial Apc10.1Has2 cells. Specifically, our findings indicate that HA-CD44v6-mediated COX-2/5-LOX signaling mediate survivin production, which in turn, supports anti-apoptosis and chemo-resistance leading to colon cancer cell survival. The over-expression of CD44v6shRNA as well as ITSC treatment significantly decreases the survival of colon cancer cells. The present results thus offer an opportunity to evolve potent inhibitors of HA synthesis and CD44v6 pathway and thus underscoring the importance of the ITSC analogs as chemopreventive agents for targeting HA/CD44v6 pathway.

9.
Bioorg Med Chem ; 21(9): 2551-9, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23517721

RESUMEN

Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme have been found to play a role in promoting growth in colon cancer cell lines. The di-tert-butyl phenol class of compounds has been found to inhibit both COX-2 and 5-LOX enzymes with proven effectiveness in arresting tumor growth. In the present study, the structural analogs of 2,6 di-tert-butyl-p-benzoquinone (BQ) appended with hydrazide side chain were found to inhibit COX-2 and 5-LOX enzymes at micromolar concentrations. Molecular docking of the compounds into COX-2 and 5-LOX protein cavities indicated strong binding interactions supporting the observed cytototoxicities. The signaling interaction between endogenous hyaluronan and CD44 has been shown to regulate COX-2 activities through ErbB2 receptor tyrosine kinase (RTK) activation. In the present studies it has been observed for the first time, that three of our COX/5-LOX dual inhibitors inhibit proliferation upon hydrazide substitution and prevent the activity of pro-angiogenic factors in HCA-7, HT-29, Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressed in colon cancer cells, through inhibition of the hyaluronan/CD44v6 cell survival pathway. Since there is a substantial enhancement in the antiproliferative activities of these compounds upon hydrazide substitution, the present work opens up new opportunities for evolving novel active compounds of BQ series for inhibiting colon cancer.


Asunto(s)
Antineoplásicos/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ciclohexanonas/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Hidrazinas/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ciclohexanonas/síntesis química , Ciclohexanonas/química , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Hidrazinas/síntesis química , Hidrazinas/química , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Modelos Moleculares , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
10.
Front Oncol ; 12: 906415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982950

RESUMEN

Cancer-initiating cells (CICs) drive colorectal tumor growth by their supportive niches where CICs interact with multiple cell types within the microenvironment, including cancer-associated fibroblasts (CAFs). We investigated the interplay between the CICs and the clinically relevant chemotherapeutic FOLFOX that creates the persistent tumorigenic properties of colorectal CICs, and stimulates the microenvironmental factors derived from the CAFs. We found that the CICs expressing an immunophenotype (CD44v6[+]) promote FOLFOX-resistance and that the CIC-immunophenotype was enhanced by factors secreted by CAFs after FOLFOX treatment These secreted factors included periostin, IL17A and WNT3A, which induced CD44v6 expression by activating WNT3A/ß-catenin signaling. Blocking the interaction between CICs with any of these CAF-derived factors through tissue-specific conditional silencing of CD44v6 significantly reduced colorectal tumorigenic potential. To achieve this, we generated two unique vectors (floxed-pSico-CD44v6 shRNA plus Fabpl-Cre) that were encapsulated into transferrin coated PEG-PEI/(nanoparticles), which when introduced in vivo reduced tumor growth more effectively than using CD44v6-blocking antibodies. Notably, this tissue-specific conditional silencing of CD44v6 resulted in long lasting effects on self-renewal and tumor growth associated with a positive feedback loop linking WNT3A signaling and alternative-splicing of CD44. These findings have crucial clinical implications suggesting that therapeutic approaches for modulating tumor growth that currently focus on cell-autonomous mechanisms may be too limited and need to be broadened to include mechanisms that recognize the interplay between the stromal factors and the subsequent CIC-immunophenotype enrichment. Thus, more specific therapeutic approaches may be required to block a chemotherapy induced remodeling of a microenvironment that acts as a paracrine regulator to enrich CD44v6 (+) in colorectal CICs.

11.
Front Oncol ; 12: 906260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330477

RESUMEN

Chemoresistance in colorectal cancer initiating cells (CICs) involves the sustained activation of multiple drug resistance (MDR) and WNT/ß-catenin signaling pathways, as well as of alternatively spliced-isoforms of CD44 containing variable exon-6 (CD44v6). In spite of its importance, mechanisms underlying the sustained activity of WNT/ß-catenin signaling have remained elusive. The presence of binding elements of the ß-catenin-interacting transcription factor TCF4 in the MDR1 and CD44 promoters suggests that crosstalk between WNT/ß-catenin/TCF4-activation and the expression of the CD44v6 isoform mediated by FOLFOX, a first-line chemotherapeutic agent for colorectal cancer, could be a fundamental mechanism of FOLFOX resistance. Our results identify that FOLFOX treatment induced WNT3A secretion, which stimulated a positive feedback loop coupling ß-catenin signaling and CD44v6 splicing. In conjunction with FOLFOX induced WNT3A signal, specific CD44v6 variants produced by alternative splicing subsequently enhance the late wave of WNT/ß-catenin activation to facilitate cell cycle progression. Moreover, we revealed that FOLFOX-mediated sustained WNT signal requires the formation of a CD44v6-LRP6-signalosome in caveolin microdomains, which leads to increased FOLFOX efflux. FOLFOX-resistance in colorectal CICs occurs in the absence of tumor-suppressor disabled-2 (DAB2), an inhibitor of WNT/ß-catenin signaling. Conversely, in sensitive cells, DAB2 inhibition of WNT-signaling requires interaction with a clathrin containing CD44v6-LRP6-signalosome. Furthermore, full-length CD44v6, once internalized through the caveolin-signalosome, is translocated to the nucleus where in complex with TCF4, it binds to ß-catenin/TCF4-regulated MDR1, or to CD44 promoters, which leads to FOLFOX-resistance and CD44v6 transcription through transcriptional-reprogramming. These findings provide evidence that targeting CD44v6-mediated LRP6/ß-catenin-signaling and drug efflux may represent a novel approach to overcome FOLFOX resistance and inhibit tumor progression in colorectal CICs. Thus, sustained drug resistance in colorectal CICs is mediated by overexpression of CD44v6, which is both a functional biomarker and a therapeutic target in colorectal cancer.

12.
J Biol Chem ; 285(26): 19821-32, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20200161

RESUMEN

The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432-12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Receptores Androgénicos/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/genética , Humanos , Receptores de Hialuranos/genética , Masculino , Microdominios de Membrana/metabolismo , Modelos Biológicos , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Interferencia de ARN , Receptores Androgénicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Front Cell Dev Biol ; 9: 649862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150753

RESUMEN

BACKGROUND: Discoveries in the identification of transcription factors, growth factors and extracellular signaling molecules have led to the detection of downstream targets that modulate valvular tissue organization that occurs during development, aging, or disease. Among these, matricellular protein, periostin, and cytoskeletal protein filamin A are highly expressed in developing heart valves. The phenotype of periostin null indicates that periostin promotes migration, survival, and differentiation of valve interstitial cushion cells into fibroblastic lineages necessary for postnatal valve remodeling/maturation. Genetically inhibiting filamin A expression in valve interstitial cushion cells mirrored the phenotype of periostin nulls, suggesting a molecular interaction between these two proteins resulted in poorly remodeled valve leaflets that might be prone to myxomatous over time. We examined whether filamin A has a cross-talk with periostin/signaling that promotes remodeling of postnatal heart valves into mature leaflets. RESULTS: We have previously shown that periostin/integrin-ß1 regulates Pak1 activation; here, we revealed that the strong interaction between Pak1 and filamin A proteins was only observed after stimulation of VICs with periostin; suggesting that periostin/integrin-ß-mediated interaction between FLNA and Pak1 may have a functional role in vivo. We found that FLNA phosphorylation (S2152) is activated by Pak1, and this interaction was observed after stimulation with periostin/integrin-ß1/Cdc42/Rac1 signaling; consequently, FLNA binding to Pak1 stimulates its kinase activity. Patients with floppy and/or prolapsed mitral valves, when genetically screened, were found to have point mutations in the filamin A gene at P637Q and G288R. Expression of either of these filamin A mutants failed to increase the magnitude of filamin A (S2152) expression, Pak1-kinase activity, actin polymerization, and differentiation of VICs into mature mitral valve leaflets in response to periostin signaling. CONCLUSION: PN-stimulated bidirectional interaction between activated FLNA and Pak1 is essential for actin cytoskeletal reorganization and the differentiation of immature VICs into mature valve leaflets.

14.
J Clin Invest ; 116(11): 3026-34, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17080198

RESUMEN

PGE, a potent vasodilator, plays a primary role in maintaining the patency of the ductus arteriosus (DA). Genetic disruption of the PGE-specific receptor EP4, however, paradoxically results in fatal patent DA (PDA) in mice. Here we demonstrate that EP4-mediated signals promote DA closure by hyaluronic acid-mediated (HA-mediated) intimal cushion formation (ICF). Chronic EP4 stimulation by ONO-AE1-329, a selective EP4 agonist, significantly enhanced migration and HA production in rat DA smooth muscle cells. When HA production was inhibited, EP4-mediated migration was negated. Activation of EP4, adenylyl cyclase, and PKA all increased HA production and the level of HA synthase 2 (HAS2) transcripts. In immature rat DA explants, ICF was promoted by EP4/PKA stimuli. Furthermore, adenovirus-mediated Has2 gene transfer was sufficient to induce ICF in EP4-disrupted DA explants in which the intimal cushion had not formed. Accordingly, signals through EP4 have 2 essential roles in DA development, namely, vascular dilation and ICF. The latter would lead to luminal narrowing, helping adhesive occlusion and permanent closure of the vascular lumen. Our results imply that HA induction serves as an alternative therapeutic strategy for the treatment of PDA to the current one, i.e., inhibition of PGE signaling by cyclooxygenase inhibitors, which might delay PGE-mediated ICF in immature infants.


Asunto(s)
Conducto Arterial/embriología , Conducto Arterial/metabolismo , Ácido Hialurónico/metabolismo , Receptores de Prostaglandina E/metabolismo , Animales , Movimiento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Conducto Arterial/citología , Regulación del Desarrollo de la Expresión Génica , Glucuronosiltransferasa/genética , Hialuronano Sintasas , Ratones , Ratones Noqueados , Músculo Liso/citología , Músculo Liso/embriología , Músculo Liso/metabolismo , Ratas , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/deficiencia , Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E , Transducción de Señal , Técnicas de Cultivo de Tejidos , Transcripción Genética/genética
15.
Biochim Biophys Acta Gen Subj ; 1863(5): 813-829, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30742951

RESUMEN

The matricellular protein periostin (PN) promotes postnatal valve remodeling and maturation. Incomplete remodeling of the valve can trigger degenerative processes that lead to a myxomatous phenotype that includes loss of PN. However, signaling pathways involved that link valvular-interstitial-fibroblast cells (VICs) to proliferation, migration and actin remodeling functions are unclear. The p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements and cell proliferation/adhesion/migration functions in a variety of cellular contexts, including normal cells and cancer cells. This study shows that Pak1, but not Pak2 and Pak4, is a critical mediator of VIC survival and actin organization, and that the molecular signaling regulating actin-remodeling is initiated upon PN/beta-integrin-induced phosphorylation of the focal-adhesion-kinase (Fak) (Y397). Molecular and pharmacological inhibition of key components of PN/Fak/Akt1 signaling abolished the PN-induced actin polymerization and the activation of mTOR, p70S6K and Pak1. Similarly, blocking mTOR inhibited p70S6K, Pak1 phosphorylation and consequently actin-polymerization. Accordingly, inhibiting p70S6K blocked Pak1 phosphorylation and actin polymerization, and subsequently inhibited adhesion and growth of VICs. Periostin-induced Akt1 activation of Pak1 is independent of Cdc42 and Rac1 GTPases, and Akt1 is both downstream and upstream of Pak1. Further, the PN-Pak1-induced Akt1 protects cells from apoptosis through suppression of transcriptional activation of Forkhead-Transcription-Factor (FKHR). In contrast, kinase deficient Pak1 increases apoptosis by increasing FKHR-mediated transcriptional activation. These studies define new functional significance of PN-Fak-Akt1-Pak1 signaling that at least partly regulates Akt1-induced actin polymerization and FKHR-mediated transcriptional activation, which may eventually regulate the mature-valve-leaflet remodeling function, and also FKHR-mediated transcriptional activation for pro-survival of VICs.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Integrina beta1/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Supervivencia Celular , Ratones , Ratones Endogámicos C57BL
16.
Connect Tissue Res ; 49(3): 219-24, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18661347

RESUMEN

Carcinomas arising from colon epithelia develop or progress in a stromal microenvironment that is elevated in hyaluronan; interactions between elevated hyaluronan and the CD44 receptors on epithelial tumor cells activate an HA-receptor tyrosine kinase-mediated cell survival pathway. In this review we provide evidence that the hyaluronan-ErbB2-PI3kinase/AKT-ss-catenin-COX-2 signaling axis leads to intestinal epithelial and colon tumor cell division and proliferation. This review includes a summary of the authors work over the past years as well as citations of specific reviews related to role of hyaluronan in the pathogenesis of colon cancer.


Asunto(s)
Neoplasias del Colon/metabolismo , Ciclooxigenasa 2/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Neoplasias del Colon/patología , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurónico/química
17.
Matrix Biol ; 59: 3-22, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27746219

RESUMEN

Synthesis, deposition, and interactions of hyaluronan (HA) with its cellular receptor CD44 are crucial events that regulate the onset and progression of tumors. The intracellular signaling pathways initiated by HA interactions with CD44 leading to tumorigenic responses are complex. Moreover, HA molecules may perform dual functions depending on their concentration and size. Overexpression of variant isoforms of CD44 (CD44v) is most commonly linked to cancer progression, whereas their loss is associated with inhibition of tumor growth. In this review, we highlight that the regulation of HA synthases (HASes) by post-translational modifications, such as O-GlcNAcylation and ubiquitination, environmental factors and the action of microRNAs is important for HA synthesis and secretion in the tumor microenvironment. Moreover, we focus on the roles and interactions of CD44 with various proteins that reside extra- and intracellularly, as well as on cellular membranes with particular reference to the CD44-HA axis in cancer stem cell functions, and the importance of CD44/CD44v6 targeting to inhibit tumorigenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Terapia Molecular Dirigida , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Glicosilación , Humanos , Receptores de Hialuranos/genética , Hialuronano Sintasas/genética , Ácido Hialurónico/química , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Microambiente Tumoral , Ubiquitinación
18.
Cancer Res ; 64(4): 1229-32, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14983875

RESUMEN

Emmprin (CD147; basigin) is a plasma membrane glycoprotein, enriched on the surface of many cancer cells, which induces matrix metalloproteinase synthesis via cell-cell interactions. Elevated emmprin production causes increased growth in vivo of human mammary carcinoma cells. In this study, we show that elevation of emmprin expression in less aggressive human carcinoma cells, which normally express low emmprin levels, induces the ability to grow under anchorage-independent conditions. We also found that elevated emmprin expression stimulates hyaluronan production and that the effect of emmprin on anchorage-independent growth is dependent on hyaluronan. Furthermore, emmprin stimulates cell survival pathway signaling in a hyaluronan-dependent manner. From these and other studies we conclude that emmprin enhances several malignant properties of cancer cells, including anchorage-independent growth, invasiveness, and chemoresistance.


Asunto(s)
Antígenos CD , Antígenos de Neoplasias , Neoplasias de la Mama/patología , Ácido Hialurónico/biosíntesis , Glicoproteínas de Membrana/fisiología , Basigina , Neoplasias de la Mama/metabolismo , División Celular , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos
19.
Front Immunol ; 6: 201, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25999946

RESUMEN

The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a "dynamic" molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.

20.
Int J Cell Biol ; 2015: 537560, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26448753

RESUMEN

The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA