RESUMEN
Multiple switching modes in a Ta2O5/HfO2 memristor are studied experimentally and numerically through a reservoir computing (RC) simulation to reveal the importance of nonlinearity and heterogeneity in the RC framework. Unlike most studies, where homogeneous reservoirs are used, heterogeneity is introduced by combining different behaviors of the memristor units. The chosen memristor for the reservoir units is based on a Ta2O5/HfO2 bilayer, in which the conductances of the Ta2O5 and HfO2 layers are controlled by the oxygen vacancies and deep/shallow traps, respectively, providing both volatile and non-volatile resistive switching modes. These several control parameters make the second-order Ta2O5/HfO2 memristor system present different behaviors in agreement with its history-dependent conductance and allow the fine-tuning of the behavior of each reservoir unit. The heterogeneity in the reservoir units improves the pattern recognition performance in the heterogeneous memristor RC system with a similar physical structure.
RESUMEN
This study explores the stochastic and binary switching behaviors of a Ta/HfO2/RuO2 memristor to implement a combined data mining approach for outlier detection and data clustering algorithms in a multi-functional memristive crossbar array. The memristor switches stochastically with high state dispersion in the stochastic mode and deterministically between two states with low dispersion in the binary mode, while they can be controlled by varying operating voltages. The stochastic mode facilitates the parallel generation of random hyperplanes in a tree structure, used to compress spatial information of the dataset in the Euclidian space into binary format, still retaining sufficient spatial features. The ensemble effect from multiple trees improved the classification performance. The binary mode facilitates parallel Hamming distance calculation of the binary codes containing spatial information, which measures similarity. These two modes enable efficient implementation of the newly proposed minority-based outlier detection method and modified K-means method on the same hardware. Array measurements and hardware simulations investigate various hyperparameters' impact and validate the proposed methods with practical datasets. The proposed methods show linear O(n) time complexity and high energy efficiency, consuming <1% of the energy compared to digital computing with conventional algorithms while demonstrating software-comparable performance in both tasks.
RESUMEN
Neuromorphic computing promises an energy-efficient alternative to traditional digital processors in handling data-heavy tasks, primarily driven by the development of both volatile (neuronal) and nonvolatile (synaptic) resistive switches or memristors. However, despite their energy efficiency, memristor-based technologies presently lack functional tunability, thus limiting their competitiveness with arbitrarily programmable (general purpose) digital computers. This work introduces a two-terminal bilayer memristor, which can be tuned among neuronal, synaptic, and hybrid behaviors. The varying behaviors are accessed via facile control over the filament formed within the memristor, enabled by the interplay between the two active ionic species (oxygen vacancies and metal cations). This solution is unlike single-species ion migration employed in most other memristors, which makes their behavior difficult to control. By reconfiguring a single crossbar array of hybrid memristors, two different applications that usually require distinct types of devices are demonstrated - reprogrammable heterogeneous reservoir computing and arbitrary non-Euclidean graph networks. Thus, this work outlines a potential path toward functionally reconfigurable postdigital computers.
RESUMEN
Due to its area and energy efficiency, a memristive crossbar array (CBA) has been extensively studied for various combinatorial optimization applications, from network problems to circuit design. However, conventional approaches include heavily burdening software fine-tuning for the annealing process. Instead, this study introduces the "in-materia annealing" method, where the inter-layer interference of vertically stacked memristive CBA is utilized as an annealing method. When mapping combinatorial optimization problems into the configuration layer of the CBA, exponentially decaying annealing profiles are generated in nearby noise layers. Moreover, in-materia annealing profiles can be controlled by changing compliance current, read voltage, and read pulse width. Therefore, the annealing profiles can be arbitrarily controlled and generated individually for each cell, providing rich noise sources to solve the problem efficiently. Consequently, the experimental and simulation of Max-Cut and weighted Max-Cut problems achieve notable results with the minimum software burden.
RESUMEN
In the big data era, the requirement for data clustering methods that can handle massive and heterogeneous datasets with varying distributions increases. This study proposes a clustering algorithm for data sets with heterogeneous density using a dual-mode memristor crossbar array for data clustering. The array consists of a Ta/HfO2/RuO2 memristor operating in analog or digital modes, controlled by the reset voltage. The digital mode shows low dispersion and a high resistance ratio, and the analog mode enables precise conductance tuning. The local outlier factor is introduced to handle a heterogeneous density, and the required Euclidean and K-distances within the given dataset are calculated in the analog mode in parallel. In the digital mode, clustering is performed based on the connectivity among data points after excluding the detected outliers. The proposed algorithm boasts linear time complexity for the entire process. Extensive evaluations of synthetic datasets demonstrate significant improvement over representative density-based algorithms, and the datasets with heterogeneous density are clustered feasibly. Finally, the proposed algorithm is used to cluster the single-molecule localization microscopy data, demonstrating the feasibility of the suggested method for real-world problems.
RESUMEN
Higher functionality should be achieved within the device-level switching characteristics to secure the operational possibility of mixed-signal data processing within a memristive crossbar array. This work investigated electroforming-free Ta/HfO2/RuO2 resistive switching devices for digital- and analog-type applications through various structural and electrical analyses. The multiphase reset behavior, induced by the conducting filament modulation and oxygen vacancy generation (annihilation) in the HfO2 layer by interacting with the Ta (RuO2) electrode, was utilized for the switching mode change. Therefore, a single device can manifest stable binary switching between low and high resistance states for the digital mode and the precise 8-bit conductance modulation (256 resistance values) via an optimized pulse application for the analog mode. An in-depth analysis of the operation in different modes and comparing memristors with different electrode structures validate the proposed mechanism. The Ta/HfO2/RuO2 resistive switching device is feasible for a mixed-signal processable memristive array.