RESUMEN
PURPOSE: Gallbladder cancers (GBC), unique to certain geographical regions, are lethal digestive tract cancers, disproportionately affecting women, with limited information on risk factors. METHODS: We evaluated the association between household cooking fuel and GBC risk in a hospital-based case-control study conducted in the North-East and East Indian states of Assam and Bihar. We explored the potential mediation by diet, fire-vents, 'daily exposure duration' and parity (among women). We recruited biopsy-confirmed GBC (n = 214) men and women aged 30-69 years between 2019 and 2021, and controls frequency-matched by age, sex and region (n = 166). Information about cooking fuel, lifestyle, personal and family history, female reproductive factors, socio-demographics, and anthropometrics was collected. We tested associations using multivariable logistic regression analyses. RESULTS: All participants (73.4% women) were categorised based on predominant cooking fuel use. Group-1: LPG (Liquefied Petroleum Gas) users in the previous 20 years and above without concurrent biomass use (26.15%); Group-2: LPG users in the previous 20 years and above with concurrent secondary biomass use (15.9%); Group-3: Biomass users for ≥ 20 years (57.95%). Compared to group-1, accounting for confounders, GBC risk was higher in group-2 [OR: 2.02; 95% CI: 1.00-4.07] and group-3 [OR: 2.01; 95% CI: 1.08-3.73] (p-trend:0.020). These associations strengthened among women that attenuated with high daily consumption of fruits-vegetables but not with fire-vents, 'daily exposure duration' or parity. CONCLUSION: Biomass burning was associated with a high-risk for GBC and should be considered as a modifiable risk factor for GBC. Clean cooking fuel can potentially mitigate, and a healthy diet can partially reduce the risk among women.
Asunto(s)
Contaminación del Aire Interior , Neoplasias de la Vesícula Biliar , Petróleo , Masculino , Embarazo , Humanos , Femenino , Neoplasias de la Vesícula Biliar/epidemiología , Neoplasias de la Vesícula Biliar/etiología , Contaminación del Aire Interior/efectos adversos , Estudios de Casos y Controles , Culinaria , Factores de Riesgo , India/epidemiologíaRESUMEN
BACKGROUND: While modeled estimates and studies in contaminated areas indicate high lead exposure among children in Bihar, India, local data on lead exposure in the child population is limited. OBJECTIVES: To characterize lead exposure, and assess potential sources of lead exposure among a state-representative sample of children and their pregnant mothers residing in Bihar. METHODS: Blood samples were collected from 697 children under five and 55 pregnant women from eight districts in Bihar. Blood lead levels were determined using capillary blood and a portable lead analyzer. Household demographics, home environment, behavior, and nutrition information were collected through computer-assisted personal interviews with primary caregivers. Logistic regression was used to assess associations between potential risk factors and elevated blood lead levels. RESULTS: More than 90% of children and 80% of pregnant women reported blood lead levels ≥5 µg/dL. Living near a lead-related industry and pica behavior of eating soil were significantly associated with increased odds of having elevated blood lead levels. Additional risk factors for having a blood level ≥5 µg/dL included the use of skin lightning cream (aOR = 5.11, 95%CI: 1.62, 16.16) and the use of eyeliners (aOR = 2.81, 95%CI: 1.14, 6.93). Having blood lead levels ≥10 µg/dL was also significantly associated with the household member who had an occupation or hobby involving the use of lead (aOR = 1.75, 95%CI: 1.13, 2.72). DISCUSSION: Elevated blood lead levels were prevalent among children and pregnant women in Bihar, indicating the urgent need for a comprehensive lead poisoning prevention strategy.
Asunto(s)
Plomo , Humanos , India , Femenino , Plomo/sangre , Embarazo , Factores de Riesgo , Adulto , Preescolar , Prevalencia , Exposición a Riesgos Ambientales/análisis , Masculino , Lactante , Adulto Joven , Contaminantes Ambientales/sangre , Exposición Materna , Pica/epidemiología , Pica/sangreRESUMEN
Groundwater arsenic poisoning has posed serious health hazards in the exposed population. The objective of the study is to evaluate the arsenic ingestion from breastmilk among pediatric population in Bihar. In the present study, the total women selected were n = 513. Out of which n = 378 women after consent provided their breastmilk for the study, n = 58 subjects were non-lactating but had some type of disease in them and n = 77 subjects denied for the breastmilk sample. Hence, they were selected for the women health study. In addition, urine samples from n = 184 infants' urine were collected for human arsenic exposure study. The study reveals that the arsenic content in the exposed women (in 55%) was significantly high in the breast milk against the WHO permissible limit 0.64 µg/L followed by their urine and blood samples as biological marker. Moreover, the child's urine also had arsenic content greater than the permissible limit (< 50 µg/L) in 67% of the studied children from the arsenic exposed regions. Concerningly, the rate at which arsenic is eliminated from an infant's body via urine in real time was only 50%. This arsenic exposure to young infants has caused potential risks and future health implications. Moreover, the arsenic content was also very high in the analyzed staple food samples such as rice, wheat and potato which is the major cause for arsenic contamination in breastmilk. The study advocates for prompt action to address the issue and implement stringent legislative measures in order to mitigate and eradicate this pressing problem that has implications for future generations.
Asunto(s)
Arsénico , Exposición Materna , Leche Humana , Contaminantes del Agua , Humanos , Leche Humana/química , Arsénico/análisis , Arsénico/sangre , Arsénico/toxicidad , Arsénico/orina , India , Contaminantes del Agua/toxicidad , Contaminantes del Agua/orina , Recién Nacido , Lactante , Alimentos , Oryza/química , Triticum/química , Solanum tuberosum/químicaRESUMEN
Biochar, a promising carbon-rich and carbon-negative material, can control water pollution, harness the synergy of sustainable development goals, and achieve circular economy. This study examined the performance feasibility of treating fluoride-contaminated surface and groundwater using raw and modified biochar synthesized from agricultural waste rice husk as problem-fixing renewable carbon-neutral material. Physicochemical characterizations of raw/modified biochars were investigated using FESEM-EDAX, FTIR, XRD, BET, CHSN, VSM, pHpzc, Zeta potential, and particle size analysis were analyzed to identify the surface morphology, functional groups, structural, and electrokinetic behavior. In fluoride (F-) cycling, performance feasibility was tested at various governing factors, contact time (0-120 min), initial F- levels (10-50 mg L-1), biochar dose (0.1-0.5 g L-1), pH (2-9), salt strengths (0-50 mM), temperatures (301-328 K), and various co-occurring ions. Results revealed that activated magnetic biochar (AMB) possessed higher adsorption capacity than raw biochar (RB) and activated biochar (AB) at pH 7. The results indicated that maximum F- removal (98.13%) was achieved using AMB at pH 7 for 10 mg L-1. Electrostatic attraction, ion exchange, pore fillings, and surface complexation govern F- removal mechanisms. Pseudo-second-order and Freundlich were the best fit kinetic and isotherm for F- sorption, respectively. Increased biochar dose drives an increase in active sites due to F- level gradient and mass transfer between biochar-fluoride interactions, which reported maximum mass transfer for AMB than RB and AB. Fluoride adsorption using AMB could be described through chemisorption processes at room temperature (301 K), though endothermic sorption follows the physisorption process. Fluoride removal efficiency reduced, from 67.70% to 53.23%, with increased salt concentrations from 0 to 50 mM NaCl solutions, respectively, due to increased hydrodynamic diameter. Biochar was used to treat natural fluoride-contaminated surface and groundwater in real-world problem-solving measures, showed removal efficiency of 91.20% and 95.61%, respectively, for 10 mg L-1 F- contamination, and has been performed multiple times after systematic adsorption-desorption experiments. Lastly, techno-economic analysis was analyzed for biochar synthesis and F- treatment performance costs. Overall, our results revealed worth output and concluded with recommendations for future research on F- adsorption using biochar.
Asunto(s)
Agua Subterránea , Oryza , Contaminantes Químicos del Agua , Purificación del Agua , Fluoruros , Oryza/química , Purificación del Agua/métodos , Carbón Orgánico/química , Adsorción , Agua Subterránea/química , Cinética , Concentración de Iones de HidrógenoRESUMEN
Epidemiological studies have associated chronic exposure to arsenic (As) from drinking water with increased risk of hypertension. However, evidence of an association between As exposure from food and hypertension risks is sparse. To quantify the association between daily As intake from both food (rice, wheat and potatoes) and drinking water (Aswater) along with total exposure (Astotal) and hypertension risks in a study population in Bihar, India, we conducted an individual level cross-sectional analysis between 2017 and 2019 involving 150 participants. Arsenic intake variables and three indicators of hypertension risks (general hypertension, low-density lipoprotein (LDL) and high-density lipoprotein (HDL)) were derived, and any relationship was quantified using a series of crude and multivariable log-linear or logistic regression models. The prevalence of general hypertension was 40% for the studied population. The median level of HDL was 45 mg/dL while median value of LDL was 114 mg/dL. Apart from a marginally significant positive relationship between As intake from rice and the changes of LDL (p-value = 0.032), no significant positive association between As intake and hypertension risks could be ascertained. In fact, Astotal was found to be associated with lower risks of general hypertension and higher levels of HDL (p-value = 0.020 and 0.010 respectively) whilst general hypertension was marginally associated with lower Aswater (p-value = 0.043). Due to limitations regarding study design and residual confounding, all observed marginal associations should be treated with caution.
Asunto(s)
Arsénico , Agua Potable , Hipertensión , Contaminantes Químicos del Agua , Arsénico/análisis , Arsénico/toxicidad , Estudios Transversales , Agua Potable/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación de Alimentos/análisis , Humanos , Hipertensión/inducido químicamente , Hipertensión/epidemiología , India/epidemiología , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
BACKGROUND: Toxicity by pesticide has become a global health issue and leaves a harmful impact on human health via various ways. The people exposed to pesticides in the rural population get affected by the harmful effects of it as they enter the human body system through skin, inhalation, oral administration, food chain and many more ways. The present work is designed to study the toxic effect of endosulfan in male (n=30) and female (n=30) Swiss albino mice. Endosulfan was administered by oral gavage (oral administration) method, at the dose of 3.5 mg/Kg body weight daily for period of 3 weeks, 5 weeks and 7 weeks. After the completion of the treatment, the mice were sacrificed and their ovary and testis tissues were dissected out to check the degeneration. The blood was collected for karyotyping, biochemical and hormonal analysis of pesticide induced genotoxicity. After 7 weeks of administration with Endosulfan, various abnormalities were observed in male and female mice. RESULTS: Treatment with endosulfan at the dose of 3.5 mg/Kg body weight caused a higher degree of degeneration in the reproductive organ of Swiss albino mice . Treatment by this pesticide generated degeneration in long duration of dosage for 3,5 and 7 weeks. Ovaries of endosulfan administered groups showed degenerated germinal epithelium, Graffian follicles and corpus luteum. In testis of endosulfan treated mice, microscopic examination showed that there is significant damage and reduction in the tissue of seminiferous tubules and primordial germ cells. High degree of degeneration caused the disarrangement and deformation of spermatogonia with the decrease in the number of Sertoli cells. Biochemical and hormonal properties was also affected by endosulfan treatment. There was significant 5 folds decrease in the testosterone value of endosulfan in 7 weeks treated mice in comparison to control (p < 0.0001) and similarly there was significant elevation in the estrogen levels found in 7th week endosulfan treated mice. It also influenced the level of free radicals as there was significant decrease (p < 0.0001) in the value in catalase levels in 7 weeks endosulfan treated male and female mice, while significant (p < 0.0001) increase in the values of lipid peroxidation levels as 8 folds and 10 folds in 7 weeks endosulfan treated male and female Swiss albino mice respectively. This study hence speculates that the endosulfan exposed population are at the risk of reproductive health hazards. CONCLUSIONS: The present study thus concludes that, endosulfan after 7 weeks of exposure caused significant reproductive damage to both male and female Swiss albino mice groups. Moreover, the karyotyping study also correlated the genotoxic damage in the mice.
RESUMEN
Recently, a substantial increase in gallbladder cancer (GBC) cases has been reported in Bihar, India. The region's groundwater can naturally contain harmful concentrations of arsenic, which appears to be epidemiologically linked to the unusually high incidence. However, the root causes remain largely unexplored. Recent findings of uranium in the state's groundwater may also have associations. This study investigates the geo-spatial epidemiology of GBC in Bihar, India-with a focus on the correlation between environmental carcinogens, particularly arsenic and uranium in groundwater, and the incidence of GBC. Utilizing data from 8460 GBC patients' registration records over an 11-year period at a single health center, the research employs Semi-parametric Geographically Weighted Poisson Regression (S-GWPR) to account for non-stationarity associations and explores significant factors contributing to GBC prevalence at a subdistrict level. The S-GWPR model outperformed the standard Poisson regression model. The estimates suggest that arsenic and uranium concentrations in groundwater did not present significant associations; however, this could be due to the lower resolution of this data at the district level, necessitating higher resolution data for accurate estimates. Other socio-environmental factors included demonstrated significant regional heterogeneity in their association with GBC prevalence. Notably, each 1 % increase in the coverage of well- and canal-irrigated areas is associated with a maximum of 3.0 % and 5.2 % rise in the GBC incidence rate, respectively, likely attributable to carcinogen exposure from irrigation water. Moreover, distance to the health center and domestic electricity connections appear to influence the number of reported GBC cases. The latter suggests that access to electricity might have facilitated the use of groundwater pumps-increasing exposure to carcinogens. The results underscore the necessity for targeted health policies and interventions based on fine-resolution spatial analysis, as well as ongoing environmental monitoring and research to better understand the multifaceted risk factors contributing to GBC.
Asunto(s)
Neoplasias de la Vesícula Biliar , Agua Subterránea , Contaminantes Químicos del Agua , India/epidemiología , Humanos , Neoplasias de la Vesícula Biliar/epidemiología , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Arsénico/análisis , Femenino , Uranio/análisis , Masculino , Incidencia , Persona de Mediana Edad , Adulto , Análisis EspacialRESUMEN
The present study was aimed at showing the importance of HPV DNA status and the clinical history of the patients required by the cytologist for accurate reporting. A total of 1250 symptomatic women who attended the gynaecology outpatient department of the Mahavir Cancer Sansthan and Nalanda Medical College, Patna, for pap smear examinations were screened and recruited for the study. Due to highly clinical symptoms out of the negative with inflammatory smears reported, one hundred and ten patients were randomly advised for biopsy and HPV 16/18 DNA analysis by a gynaecologist to correlate negative smears included in the study. Pap smear reports revealed that 1178 (94.24%) were negative for intraepithelial lesions (NILM) with inflammatory smears, 23 (1.84%) smears showed low-grade squamous intraepithelial lesions (LSIL), 12 (0.96%) smears showed high-grade squamous intraepithelial lesions, and 37 (2.96%) smears showed an atypical squamous cell of undetermined significance (ASC-US). A biopsy of 110 out of 1178 (NILM) patients revealed that 15 (13.63%) women had cervical cancer, 29 women had CIN I, 17 women had CIN II + CIN III, 35 women had benign cervical changes, and 14 women had haemorrhages. On the other hand, HPV 16/18 DNA was detected as positive in 87 out of 110. The high positivity of HPV in biopsied cases where frank cervical cancer and at-risk cancer were also observed in the negative smear-screened patients reveals that the HPV status and clinical history of the patients will be quite helpful to the cytologist for accurate reporting, and suggests that a negative HPV DNA result may be a stronger predictor of cervical cancer risk than a negative Pap test.
Asunto(s)
ADN Viral , Prueba de Papanicolaou , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Adulto , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patología , ADN Viral/análisis , ADN Viral/genética , Persona de Mediana Edad , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/diagnóstico , Displasia del Cuello del Útero/virología , Displasia del Cuello del Útero/diagnóstico , Displasia del Cuello del Útero/patología , Frotis Vaginal , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/aislamiento & purificación , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/aislamiento & purificación , Adulto Joven , Anciano , BiopsiaRESUMEN
Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India. The mean relative abundance of gene copies was found to be sulI (2.4 × 10-2 copies/16S rRNA gene) > sulII (5.4 × 10-3 copies/16S rRNA gene) > sulIII (2.4 × 10-3 copies/16S rRNA gene) in groundwater (n = 15) and surface water (n = 3). A comparison between antimicrobial resistance (AMR) genes and wastewater indicators, particularly tryptophan:fulvic-like fluorescence, suggests that wastewater was associated with AMR gene prevalence. Urban drainage channels, containing hospital and domestic wastes, are likely a substantial source of antimicrobial resistance in groundwater and surface water, including the Ganges (Ganga) River. This study is a reference point for decision-makers in the fight against antimicrobial resistance because it quantifies and determines potential sources of AMR genes in Indian groundwater.
Asunto(s)
Farmacorresistencia Bacteriana , Agua Subterránea , Sulfonamidas , India , Agua Subterránea/química , Sulfonamidas/farmacología , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua , Genes Bacterianos , Aguas Residuales/microbiología , Monitoreo del AmbienteRESUMEN
The present study was carried out in the village Kaliprasad of Bhagalpur district of Bihar to know the arsenic exposure effect in the exposed population. A total of n = 102 households were studied, and their water and biological samples such as urine and hair were collected and analyzed in a graphite furnace atomic absorption spectrophotometer (GF-AAS). The assessment of arsenic-exposed village population reveals that the villagers were suffering from serious health-related problems such as skin manifestations (hyperkeratosis and melanosis in their palm and soles), breathlessness, general body weakness, mental disorders, diabetes, hypertension (raised blood pressure), hormonal imbalance, neurological disorders, and few cancer cases. About 77% of household hand pump water had arsenic level more than the WHO recommended level of 10 µg/L, with highest level of 523 µg/L. Moreover, in 60% individual's urine samples, arsenic concentration was very high with maximum 374 µg/L while in hair 64% individuals had arsenic concentration above the permissible limit with maximum arsenic concentration of 11,398 µg/kg. The hazard quotient (HQ) was also calculated to know the arsenic risk percentage in children as 87.11%, in females as 83.15%, and in males as 82.27% by groundwater. This has surpassed the threshold value of 1 × 10 - 6 for carcinogenic risk (CR) in children, female, and male population group in the village. Hence, the exposed population of Kaliprasad village are at very high risk of the disease burden.
Asunto(s)
Intoxicación por Arsénico , Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Masculino , Femenino , Arsénico/análisis , Grupos de Población , Contaminantes Químicos del Agua/análisis , Intoxicación por Arsénico/epidemiología , India/epidemiología , AguaRESUMEN
Lead poisoning in the recent times has caused serious health threats in the exposed human population. It is estimated that about 815 million people are exposed to lead poisoning worldwide and in India total 275 million children are exposed to blood lead contamination. The present study was carried outed in 6 districts of Bihar to know the extent of lead exposure in the children through their mother's breastmilk. The biological samples such as breastmilk, mother's urine, child's urine, and mother's blood samples were collected for quantitative lead estimation. Moreover, the selected household water sources (handpump) and the food consumed by the individuals-wheat, rice and potato samples were also collected for lead quantification. The study reveals that the breastmilk had high lead content in 92% of the samples (highest value 1309 µg/L), in blood presence of lead was observed in 87% studied samples (highest value 677.2 µg/L). In mother's urine the highest lead value was 4168 µg/L (62%) and in child's urine the highest value was 875.4 µg/L (62%) respectively of the studied samples. Moreover, in the studied food samples, wheat had lead content in 45% the studied samples (highest value 7910 µg/kg). In rice in 40% of the studied samples (highest value 6972 µg/kg) and in potato 90% of the studied samples (highest value = 13786 µg/kg) were found with elevated lead content respectively. The hazard quotient (HQ) and the cancer risk (CR) for lead contamination was very much higher in mothers followed by their children. The entire study indicated that lead exposure through food (wheat, rice and potato) has reached the mother's breastmilk and from their it has reached their child's body. This could cause serious hazards in the exposed children causing serious neurological damages, low IQ, low memory, and low mental growth in them. Therefore, a strategic action is required to control the present problem.
Asunto(s)
Contaminación de Alimentos , Plomo , Leche Humana , Humanos , Plomo/análisis , Plomo/sangre , India , Leche Humana/química , Medición de Riesgo , Femenino , Contaminación de Alimentos/análisis , Niño , Madres , Oryza/química , Lactante , Preescolar , Contaminantes Ambientales/análisis , Intoxicación por Plomo/epidemiología , Adulto , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Exposición Dietética/análisis , Exposición Dietética/estadística & datos numéricosRESUMEN
The distribution and composition of dissolved organic matter (DOM) affects numerous (bio)geochemical processes in environmental matrices including groundwater. This study reports the spatial and seasonal controls on the distribution of groundwater DOM under the rapidly developing city of Patna, Bihar (India). Major DOM constituents were determined from river and groundwater samples taken in both pre- and post-monsoon seasons in 2019, using excitation-emission matrix (EEM) fluorescence spectroscopy. We compared aqueous fluorescent DOM (fDOM) composition to satellite-derived land use data across the field area, testing the hypothesis that the composition of groundwater DOM, and particularly the components associated with surface-derived ingress, may be controlled, in part, by land use. In the pre-monsoon season, the prominence of tryptophan-like components likely generated from recent biological activity overwhelmed the humic-like and tyrosine-like fluorescence signals. Evidence from fluorescence data suggest groundwater in the post-monsoon season is composed of predominantly i) plant-derived matter and ii) anthropogenically influenced DOM (e.g. tryptophan-like components). Organic tracers, as well as Eh and Cl-, suggest monsoonal events mobilise surface-derived material from the unsaturated zone, causing dissolved organic carbon (DOC) of more microbial nature to infiltrate to >100 m depth. A correlation between higher protein:humic-like fluorescence and lower vegetation index (NDVI), determined from satellite-based land use data, in the post-monsoon season, indicates the ingression of wastewater-derived OM in groundwater under the urban area. Attenuated protein:humic-like fluorescence in groundwater close to the river points towards the mixing of groundwater and river water. This ingress of surface-derived OM is plausibly exacerbated by intensive groundwater pumping under these areas. Our approach to link the composition of aqueous organics with land use could easily be adapted for similar hydrogeochemical settings to determine the factors controlling groundwater DOM composition in various contexts.
RESUMEN
BACKGROUND: Evidence linking arsenic in drinking water to digestive tract cancers is limited. We evaluated the association between arsenic levels in groundwater and gallbladder cancer risk in a case-control study (2019-2021) of long-term residents (≥10years) in two arsenic-impacted and high gallbladder cancer risk states of India-Assam and Bihar. METHODS: We recruited men and women aged 30 to 69 years from hospitals (73.4% women), with newly diagnosed, biopsy-confirmed gallbladder cancer (N = 214) and unrelated controls frequency-matched for 5-year age, sex, and state (N = 166). Long-term residential history, lifestyle factors, family history, socio-demographics, and physical measurements were collected. Average-weighted arsenic concentration (AwAC) was extrapolated from district-level groundwater monitoring data (2017-2018) and residential history. We evaluated gallbladder cancer risk for tertiles of AwAC (µg/L) in multivariable logistic regression models adjusted for important confounders [Range: 0-448.39; median (interquartile range), T1-0.45 (0.0-1.19); T2-3.75 (2.83-7.38); T3-17.6 (12.34-20.54)]. RESULTS: We observed a dose-response increase in gallbladder cancer risk based on AwAC tertiles [OR = 2.00 (95% confidence interval, 1.05-3.79) and 2.43 (1.30-4.54); Ptrend = 0.007]. Participants in the highest AwAC tertile consumed more tubewell water (67.7% vs. 27.9%) and reported more sediments (37.9% vs. 18.7%) with unsatisfactory color, odor, and taste (49.2% vs. 25.0%) than those in the lowest tertile. CONCLUSIONS: These findings suggest chronic arsenic exposure in drinking water at low-moderate levels may be a potential risk factor for gallbladder cancer. IMPACT: Risk factors for gallbladder cancer, a lethal digestive tract cancer, are not fully understood. Data from arsenic-endemic regions of India, with a high incidence of gallbladder cancer, may offer unique insights. Tackling 'arsenic pollution' may help reduce the burden of several health outcomes.
Asunto(s)
Arsénico , Agua Potable , Neoplasias de la Vesícula Biliar , Contaminantes Químicos del Agua , Masculino , Humanos , Femenino , Agua Potable/análisis , Estudios de Casos y Controles , Exposición a Riesgos Ambientales , India/epidemiologíaRESUMEN
The presence and distribution of emerging organic contaminants (EOCs) in freshwater environments is a key issue in India and globally, particularly due to ecotoxicological and potential antimicrobial resistance concerns. Here we have investigated the composition and spatial distribution of EOCs in surface water along a â¼500 km segment of the iconic River Ganges (Ganga) and key tributaries in the middle Gangetic Plain of Northern India. Using a broad screening approach, in 11 surface water samples, we identified 51 EOCs, comprising of pharmaceuticals, agrochemicals, lifestyle and industrial chemicals. Whilst the majority of EOCs detected were a mixture of pharmaceuticals and agrochemicals, lifestyle chemicals (and particularly sucralose) occurred at the highest concentrations. Ten of the EOCs detected are priority compounds (e.g. sulfamethoxazole, diuron, atrazine, chlorpyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, thiamethoxam, imidacloprid, clothianidin and diclofenac). In almost 50% of water samples, sulfamethoxazole concentrations exceeded predicted no-effect concentrations (PNECs) for ecological toxicity. A significant downstream reduction in EOCs was observed along the River Ganga between Varanasi (Uttar Pradesh) and Begusarai (Bihar), likely reflecting dilution effects associated with three major tributaries, all with considerably lower EOC concentrations than the main Ganga channel. Sorption and/or redox controls were observed for some compounds (e.g. clopidol), as well as a relatively high degree of mixing of EOCs within the river. We discuss the environmental relevance of the persistence of several parent compounds (notably atrazine, carbamazepine, metribuzin and fipronil) and associated transformation products. Associations between EOCs and other hydrochemical parameters including excitation emission matrix (EEM) fluorescence indicated positive, significant, and compound-specific correlations between EOCs and tryptophan-, fulvic- and humic-like fluorescence. This study expands the baseline characterization of EOCs in Indian surface water and contributes to an improved understanding of the potential sources and controls on EOC distribution in the River Ganga and other large river systems.
Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , India , Agua , Agroquímicos , Preparaciones FarmacéuticasRESUMEN
In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient's biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration (p < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient's blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients' biological samples-gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.
Asunto(s)
Intoxicación por Arsénico , Arsénico , Neoplasias de la Vesícula Biliar , Cálculos Biliares , Humanos , Arsénico/análisis , Neoplasias de la Vesícula Biliar/epidemiología , Neoplasias de la Vesícula Biliar/etiología , Intoxicación por Arsénico/complicaciones , Intoxicación por Arsénico/epidemiología , Cálculos Biliares/epidemiología , Carcinogénesis , India/epidemiologíaRESUMEN
Microplastics (MPs) and nanoplastics (NPs) are key indicators of the plasticine era, widely spread across different ecosystems. MPs and NPs become global stressors due to their inherent physicochemical characteristics and potential impact on ecosystems and humans. MPs and NPs have been exposed to humans via various pathways, such as tap water, bottled water, seafood, beverages, milk, fish, salts, fruits, and vegetables. This paper highlights MPs and NPs pathways to the food chains and how these plastic particles can cause risks to human health. MPs have been evident in vivo and vitro and have been at health risks, such as respiratory, immune, reproductive, and digestive systems. The present work emphasizes how various MPs and NPs, and associated toxic chemicals, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), impact human health. Polystyrene (PS) and polyvinyl chloride (PVC) are common MPs and NPs, reported in human implants via ingestion, inhalation, and dermal exposure, which can cause carcinogenesis, according to Agency for Toxic Substances and Disease Registry (ATSDR) reports. Inhalation, ingestion, and dermal exposure-response cause genotoxicity, cell division and viability, cytotoxicity, oxidative stress induction, metabolism disruption, DNA damage, inflammation, and immunological responses in humans. Lastly, this review work concluded with current knowledge on potential risks to human health and knowledge gaps with recommendations for further investigation in this field.
Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Carcinogénesis , Ecosistema , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisisRESUMEN
The presence of arsenic (As) and other inorganic contaminants in groundwater is a key public health issue in India and many other parts of the world. Whilst a broad range of remediation technologies exist, performance can be highly variable, and appropriate selection and management of remediation approaches remains challenging. Here, we have identified and tested the performance of a range of small-scale remediation technologies (e.g. sand filters, multi-stage filtration and reverse osmosis (RO)-based systems; n = 38) which have been implemented in Bihar, India. We have undertaken spot-assessments of system performance under typical operating conditions in household and non-household (e.g. community, hospital, hostel/hotel) settings. The removal of As and other inorganic contaminants varied widely (ranging from ~0-100%), with some solutes generally more challenging to remove than others. We have evaluated the relative importance of technology type (e.g. RO-based versus non-RO systems), implementation setting (e.g. household versus non-household) and source water geochemistry (particularly concentrations and ratios of As, Fe, P, Si and Ca), as potential controls on remediation effectiveness. Source water composition, particularly the ratio ([Fe] - 1.8[P])/[As], is a statistically significant control on As removal (p < 0.01), with higher ratios associated with higher removal, regardless of technology type (under the site-specific conditions observed). This ratio provides a theoretical input which could be used to identify the extent to which natural groundwater composition may be geochemically compatible with higher levels of As removal. In Bihar, we illustrate how this ratio could be used to identify spatial patterns in theoretical geochemical compatibility for As removal, and to identify where additional Fe may theoretically facilitate improved remediation. This geochemical approach could be used to inform optimal selection of groundwater remediation approaches, when considered alongside other important considerations (e.g. technical, managerial and socio-economic) known to impact the effective implementation and sustainability of successful groundwater remediation approaches.
Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Filtración , Agua Subterránea/química , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Corona virus is pandemic and responsible for more than 5.6 million deaths. It was observed that its severity was reported in varied ways in different countries and even in different states of India. This variation was critically evaluated in the area with high contamination of Arsenic (As) to understand the arsenic toxicity and Covid epidemiology and associated health effects in the human population. It was reported that the area with low arsenic contamination has a very high incidence rate of Corona infection in the world. Even in the Indian scenario, high As-contaminated states like West Bengal, Jharkhand and Bihar, the incidence rate is 1.994%, 1.114% and 0.661%, respectively. In contrast, states with the least arsenic contamination have a very high corona incidence rate like 6.308, 17.289 and 4.351, respectively. It was evident that Arsenic inhibits the RdRp complex, which leads to the inhibition of viral genome replication. The PAMP associated pathway was activated by Arsenic and effectively bound with viral spike proteins leading to effective clearance of virus through activation of TNF alpha and IL-1. It finally leads to increased production of IgE, IgG and IGA. Arsenic also enhances inflammatory response against the virus through increased production of cytokine. The high arsenic level also induces apoptosis in viral infected cells through Bax/Bak pathway. It activates cytochrome-c and caspase-3 activity, inducing apoptosis in viral infected cells through PARP activation in the nucleus. These combined findings suggest that high arsenic contamination causes replication inhibition, activates an inflammatory response, increases antibody production, and finally leads to apoptosis through the mitochondrial pathway. People residing in arsenic hit areas are at a very low threat of corona infection.
RESUMEN
Arsenic poisoning in ground water is one of the most sensitive environmental pollutant causing serious pollution all over the world. Chronic arsenic exposure through drinking water to humans leads to major public health related issues. There have been very meagre studies which reported that, the plant constituents proved to exhibit protective effect from arsenicosis. Therefore, the present study aims to evaluate the protective efficacy of Coriandrum sativum seeds extract against sodium arsenite induced toxicity in Swiss albino mice. In the present study twenty-four male healthy Swiss albino mice (30 ± 5 g) were divided into four groups (n = 6), where the control group received normal diet and water; group II and group III treated with sodium arsenite (2 mg per kg body weight per day) for 2 and 4 weeks respectively. The group IV mice were administered with C.sativum seeds extract at the dose of 150 mg per kg body weight per day for 4 weeks upon sodium arsenite pretreated (2 mg/kg body weight for 4 weeks per day) mice. After the complete dose duration, all the treatment group animals were sacrificed same day for haematological, biochemical and histopathological study. In the arsenic treated mice, there were significant (p < 0.0001) changes in the serum levels of ALT, AST, ALP, urea, uric acid and creatinine as well as in the haematological parameters. In contrast, after the administration with C.sativum seeds extract upon arsenic pretreated mice, there was significant (p < 0.0001) improvement observed in the hepatic and renal biomarker parameters as well as haematological variables. In the arsenic intoxicated mice, after administration with C.sativum seeds extract there was significant (p < 0.0001) reduction in the arsenic concentration in blood, liver and kidney tissues as well as in the serum LPO levels. Furthermore, the histopathological study showed that, C.sativum seeds extract administrated group of mice significantly restored the liver and kidney at cellular level against arsenic induced toxicity. The entire study concludes that C.sativum seeds extract possesses the ameliorative effect against arsenic induced liver and kidney intoxication.
RESUMEN
Fast growing arsenic menace is causing serious health hazards in Bihar, India, with an estimated 10 million people at risk. The exposed population is often unaware of the problem, which only amplifies the burden of arsenic health effects. In the present study, we have assessed the current situation of arsenic exposure in Chapar village of Samastipur district, Bihar. The health of the inhabitants was assessed and correlated with (1) arsenic concentrations in the groundwater of individual wells and (2) arsenic concentration found in their hair and urine. Altogether, 113 inhabitants were assessed, and 113 hair, urine and groundwater samples were collected. The health study reveals that the exposure to arsenic has caused serious health hazard amongst the exposed population with pronounced skin manifestations, loss of appetite, anaemia, constipation, diarrhoea, general body weakness, raised blood pressure, breathlessness, diabetes, mental disabilities, diabetes, lumps in the body and few cancer incidences. It was found that 52% of the total collected groundwater samples had arsenic levels higher than the WHO limit of 10 µg/l (with a maximum arsenic concentration of 1212 µg/l) and the reduced arsenite was the predominant form in samples tested for speciation (N = 19). In the case of hair samples, 29% of the samples had arsenic concentrations higher than the permissible limit of 0.2 mg/kg, with a maximum arsenic concentration of 46 µg/l, while in 20% exposed population, there was significant arsenic contamination in urine samples > 50 µg/l. In Chapar village, the probability of carcinogenic-related risk in the exposed population consuming arsenic contaminated water is 100% for children, 99.1% for females and 97.3% for male subjects. The assessment report shared to the government enabled the village population to receive two arsenic filter units. These units are currently operational and catering 250 households providing arsenic-free water through piped water scheme. This study therefore identified a significant solution for this arsenic-exposed population.