Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Surg ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38716973

RESUMEN

Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells is easier and can be further grown in vitro. In this review, we have discussed orthopedic-related issues including bone defects and fractures, non-unions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of mesenchymal stem cells. It aims to objectify the idea of stem cells, with a major focus on the application of Mesenchymal stem cells (MSCs) from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of mesenchymal stem cells may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.

2.
ACS Biomater Sci Eng ; 10(5): 2725-2741, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38630965

RESUMEN

Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.


Asunto(s)
Materiales Biocompatibles , Diabetes Mellitus , Hidrogeles , Neovascularización Fisiológica , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Neovascularización Fisiológica/efectos de los fármacos , Hidrogeles/química , Hidrogeles/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/fisiopatología , Animales , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos/métodos , Angiogénesis
3.
J Mater Chem B ; 12(24): 5869-5883, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38775079

RESUMEN

In recent years, metallic ion-doped magnesium phosphate (MgP)-based degradable bioceramics have emerged as alternative bone substitute materials owing to their excellent biocompatibility, bone-forming ability, bioactivity, and controlled degradability. Conversely, incorporating a biomolecule such as decellularized platelet-rich fibrin (d-PRF) on scaffolds has certain advantages for bone tissue regeneration, particularly in enhanced osteogenesis and angiogenesis. The present study focuses on the impact of d-PRF-loaded multiscale porous zinc-doped magnesium phosphate (Zn-MgP) scaffolds on biodegradability, biocompatibility, and bone regeneration. Scaffolds were fabricated through the powder-metallurgy route utilizing naphthalene as a porogen (porosity = 5-43%). With the inclusion of a higher porogen, a higher fraction of macro-porosity (>20 µm) and pore interconnectivity were observed. X-ray diffraction (XRD) studies confirmed the formation of the farringtonite phase. The developed scaffolds exhibited a minimum ultimate compressive strength (UCS) of 8.5 MPa (for 40 Naph), which lies within the range of UCS of the cancellous bone of humans (2-12 MPa). The in vitro assessment via immersion in physiological fluid yielded a higher deposition of the calcium phosphate (CaP) compound in response to increased macro-porosity and interconnectivity (40 Naph). Cytocompatibility assessed using MC3T3-E1 cells showed that the incorporation of d-PRF coupled with increased porosity resulted the highest cell attachment, proliferation, and viability. For further evaluation, the developed scaffolds were implanted in in vivo rabbit femur condylar defects. Radiography, SEM, OTC labelling, and histology analysis after 2 months of implantation revealed the better invasion of mature osteoblastic cells into the scaffolds with enhanced angiogenesis and superior and accelerated healing of bone defects in d-PRF-incorporated higher porosity scaffolds (40 Naph). Finally, it is hypothesized that the combination of d-PRF incorporation with multiscale porosity and increased interconnectivity facilitated better bone-forming ability, good biocompatibility, and controlled degradability within and around the Zn-doped MgP scaffolds.


Asunto(s)
Regeneración Ósea , Compuestos de Magnesio , Fosfatos , Fibrina Rica en Plaquetas , Andamios del Tejido , Zinc , Regeneración Ósea/efectos de los fármacos , Porosidad , Animales , Zinc/química , Zinc/farmacología , Andamios del Tejido/química , Ratones , Compuestos de Magnesio/química , Compuestos de Magnesio/farmacología , Fibrina Rica en Plaquetas/química , Conejos , Fosfatos/química , Fosfatos/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
4.
ACS Biomater Sci Eng ; 9(5): 2495-2513, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37121911

RESUMEN

Biodegradable magnesium (Mg)-based alloys are potential candidates for orthopedic applications. In the present study, we have discussed the effect of cerium (Ce) addition and hot forging on mechanical properties, in vitro-in vivo corrosion, antibacterial activity, and cytocompatibility of microalloyed Mg-0.2Zr-0.1Sr-xCe (x = 0 [MZS], 0.5 wt % [MZS-Ce]) alloys. Addition of 0.5 wt % Ce to forged MZS alloys leads to strengthening of the basal texture as well as formation of a higher fraction of dynamic recrystallized (DRX) grains. Hot forging and addition of cerium to the MZS alloy improve both the yield strength and ultimate tensile strength of the forged MZS-Ce alloy by 1.39 and 1.21 times, respectively, compared to those of the forged MZS alloy. The potentiodynamic polarization test in Hank's solution indicates that the corrosion resistance of the forged MZS alloy improves with addition of 0.5 wt % Ce. Uniform distribution of Mg12Ce precipitates, a higher DRX fraction, strengthened texture, and formation of a compact CeO2 passive layer result in 1.68 times reduction in the immersion corrosion rate of the forged MZS-Ce alloy compared to that of the forged MZS alloy. Addition of Ce to the MZS alloy shows excellent antibacterial activity. The forged MZS-Ce alloy exhibited the highest antibacterial efficacy (76.73%). All the alloys show favorable cytocompatibility and alkaline phosphatase (ALP) activity with MC3T3-E1 cells. The improved corrosion resistance of the forged MZS-Ce alloy (95%) leads to higher cell viability compared to that of the forged MZS alloy (85%). In vivo biodegradation and the ability to generate new bones were analyzed by implanting cylindrical samples in the rabbit femur. Histological analysis showed no adverse effects around the implants. Gradual degradation of the implants and higher new bone formation around the forged MZS-Ce sample were confirmed by micro-CT analysis. Bone regeneration around the implants (58.21%) was validated by flurochrome labeling. After 60 days, the forged MZS-Ce alloy showed controlled corrosion and better bone-implant integration, presenting it as a potential candidate for internal fracture fixation materials.


Asunto(s)
Materiales Biocompatibles , Cerio , Animales , Conejos , Materiales Biocompatibles/farmacología , Magnesio/farmacología , Aleaciones/farmacología , Cerio/farmacología , Antibacterianos/farmacología
5.
ACS Biomater Sci Eng ; 8(10): 4236-4248, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36153956

RESUMEN

Magnesium is projected for use as a degradable orthopedic biomaterial. However, its fast degradation in physiological media is considered as a significant challenge for its successful clinical applications. Bioactive reinforcements containing Mg-based composites constitute one of the promising approaches for developing degradable metallic implants because of their adjustable mechanical behaviors, corrosion resistance, and biological response. Strontium is a trace element known for its role in enhancing osteoblast activity. In this study, bioactive SrO-doped magnesium phosphate (MgP)-reinforced Mg composites containing 1, 3, and 5 wt % MgP were developed through the casting route. The influence of the SrO-doped MgP reinforcement on degradation behaviors of the composites along with its cell-material interactions and in vivo biocompatibility was investigated. The wt % and distribution of MgP particles significantly improved the mechanical properties of the composite. HBSS immersion study indicated the least corrosion rate (0.56 ± 0.038 mmpy) for the Mg-3MgP composite. The higher corrosion resistance of Mg-3MgP leads to a controlled release of Sr-containing bioactive reinforcement, which eventually enhanced the cytotoxicity as measured using MG-63 cell-material interactions. The in vivo biocompatibility of the composite was evaluated using the rabbit femur defect model. Micro-computed tomography (µ-CT) and histological analysis supported the fact that Mg-3MgP maintained its structural integrity and enhanced osteogenesis (50.36 ± 2.03%) after 2 months of implantation. The results indicated that the Mg-MgP composite could be used as a degradable internal fracture fixation device material.


Asunto(s)
Magnesio , Oligoelementos , Aleaciones , Animales , Materiales Biocompatibles/farmacología , Preparaciones de Acción Retardada , Magnesio/farmacología , Compuestos de Magnesio , Ensayo de Materiales , Fosfatos , Conejos , Estroncio/farmacología , Microtomografía por Rayos X
6.
Adv Healthc Mater ; 10(19): e2100750, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34378360

RESUMEN

Cell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling. Mechanistic analysis reveals that dWJ matrix is a reservoir of various immunomodulatory cytokines (Interleukin-8, 6, 10, 4 and tumor necrosis factor alpha (TNF-α)), which aids in upregulating M2 macrophage-associated genes facilitating pro-remodeling behavior. Besides, dWJ treatment to human endothelial cells upregulates the expression of functional genes (cluster of differentiation 31 (CD31), endothelial nitric oxide synthase (eNOS), and vascular endothelial (VE)-cadherin), enables faster cell migration, and elevates nitric oxide (NO) production leading to the in situ development of endothelium. The dWJ functionalized silk TEVGs support increased host cell recruitment than control, including macrophages and vascular cells. It endows superior graft remodeling in terms of a dense medial layer comprising smooth muscle cells and elevates the production of extracellular matrix proteins (collagen and elastin). Altogether, these findings suggest that dWJ functionalization imitates the usefulness of cell seeding and enables graft remodeling.


Asunto(s)
Prótesis Vascular , Gelatina de Wharton , Animales , Células Endoteliales , Humanos , Inmunomodulación , Venas Yugulares , Conejos , Seda , Ingeniería de Tejidos
7.
ACS Biomater Sci Eng ; 5(10): 5097-5106, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455257

RESUMEN

In vitro and in vivo degradation behavior and biocompatibility of magnesium phosphate (MgP) bioceramics and the potential role of zinc (Zn) on degradation were compared. Samples were prepared by conventional solid-state sintering at 1200 °C for 2h. Zn-doped MgP (0.5 wt %) showed 50% less degradation than that of pure MgP after immersion into simulated body fluid (SBF) for 8 weeks. Osteoblast-like cell (MG-63) proliferation was evident in MgP ceramics, which was significantly enhanced upon Zn addition. Both Alamar Blue assay and Live/Dead imaging showed the highest cell attachment and proliferation for 0.5 wt % Zn-doped MgP. In vivo biocompatibility of these MgP ceramics were studied after implantation in the rabbit femur. The micro computed tomography (µ-CT) analysis showed that in vivo degradability increased with the increase in the Zn content which is in contradiction to in vitro degradability. Histological evaluation showed large influx of osteoclast cells to the implantation site for Zn-doped MgP samples compared to that of undoped MgP, which is the primary reason of increased degradability of these samples. After 90 days of implantation, large sections of 0.5 wt % Zn-doped MgP samples were replaced by newly formed bones. Fluorochrome labeling showed 78 ± 3% new bone formation for 0.5 wt % Zn-doped MgP ceramics compared to 56 ± 3% for pure MgP samples. Our findings suggest that the addition of Zn in MgP ceramics alters their sintering and degradation kinetics that leads to decreased in vitro degradation, however, when Zn-doped MgP ceramics were implanted in rabbits, higher degradability was observed due to lower Mg2+ ion concentration in the degradation media.

8.
Int J Low Extrem Wounds ; 7(4): 204-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19019846

RESUMEN

The effects of spermatheca gland extract of snail (Telescopium telescopium) to promote wound healing were studied in an animal model. The spermatheca gland extract of the snail was used as a topical medicament to treat experimentally created full thickness wounds in 12 rabbits (Oryctologous cuniculus). Wound healing was assessed on the basis of physical, histomorphological, and histochemical changes on days 0, 3, 7, and 14. Statistically significant differences were observed between the groups in all measured parameters. These exciting findings suggest that the data should be further tested in animal models to better understand the potential for wound healing in the spermatheca gland extract of the marine snail.


Asunto(s)
Caracoles , Extractos de Tejidos/uso terapéutico , Cicatrización de Heridas , Heridas y Lesiones/terapia , Animales , Lectinas , Conejos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA