Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Epidemiol ; 47(1): 95-104, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36378773

RESUMEN

The clustering of proteins is of interest in cancer cell biology. This article proposes a hierarchical Bayesian model for protein (variable) clustering hinging on correlation structure. Starting from a multivariate normal likelihood, we enforce the clustering through prior modeling using angle-based unconstrained reparameterization of correlations and assume a truncated Poisson distribution (to penalize a large number of clusters) as prior on the number of clusters. The posterior distributions of the parameters are not in explicit form and we use a reversible jump Markov chain Monte Carlo based technique is used to simulate the parameters from the posteriors. The end products of the proposed method are estimated cluster configuration of the proteins (variables) along with the number of clusters. The Bayesian method is flexible enough to cluster the proteins as well as estimate the number of clusters. The performance of the proposed method has been substantiated with extensive simulation studies and one protein expression data with a hereditary disposition in breast cancer where the proteins are coming from different pathways.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Teorema de Bayes , Neoplasias de la Mama/genética , Modelos Genéticos , Análisis por Conglomerados , Cadenas de Markov , Método de Montecarlo
2.
Biometrics ; 79(2): 711-721, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34951484

RESUMEN

Although most statistical methods for the analysis of longitudinal data have focused on retrospective models of association, new advances in mobile health data have presented opportunities for predicting future health status by leveraging an individual's behavioral history alongside data from similar patients. Methods that incorporate both individual-level and sample-level effects are critical to using these data to its full predictive capacity. Neural networks are powerful tools for prediction, but many assume input observations are independent even when they are clustered or correlated in some way, such as in longitudinal data. Generalized linear mixed models (GLMM) provide a flexible framework for modeling longitudinal data but have poor predictive power particularly when the data are highly nonlinear. We propose a generalized neural network mixed model that replaces the linear fixed effect in a GLMM with the output of a feed-forward neural network. The model simultaneously accounts for the correlation structure and complex nonlinear relationship between input variables and outcomes, and it utilizes the predictive power of neural networks. We apply this approach to predict depression and anxiety levels of schizophrenic patients using longitudinal data collected from passive smartphone sensor data.


Asunto(s)
Redes Neurales de la Computación , Humanos , Estudios Retrospectivos , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA