Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 21(52): 19128-35, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26567486

RESUMEN

Two new heteroleptic iridium(III) complexes bearing an aryldiazoimidazole ligand are reported. These complexes differ structurally with respect to the protonation state of the imidazole ring, but can be independently accessed by varying the synthetic conditions. Their structures have been unequivocally confirmed by X-ray crystal structure analysis, with surprising differences in the structural parameters of the two complexes. The strongly absorbing nature of the free diazoimidazole ligand is enhanced in these iridium complexes, with the protonated cationic complex demonstrating extraordinarily strong panchromic absorption up to 700 nm. The absorption profile of the deprotonated neutral complex is blueshifted by about 100 nm and thus the interconversion between the two complexes as a function of the acidity/basicity of the environment can be readily monitored by absorption spectroscopy. Theoretical calculations revealed the origins of these markedly different absorption properties. Finally, the protonated analogue has been targeted as an acceptor material for organic photovoltaic (OPV) applications, and preliminary results are reported.

2.
RSC Adv ; 10(66): 39995-40004, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35520837

RESUMEN

A comprehensive study regarding the effect of different solvent vapours on organolead halide perovskite properties is lacking. In the present work, the impact of exposing CH3NH3PbI3 films to the vapours of commonly available solvents has been studied. The interaction with perovskite has been correlated to solvent properties like dielectric constant, molecular dipole moment, Gutmann donor number and boiling point. Changes in the crystallinity, phase, optical absorption, morphologies at both nanometer and micrometer scale, functional groups and structures were studied using X-ray diffraction, UV-visible absorption, FE-SEM, FTIR and Raman spectroscopies. Among the aprotic solvents DMSO and DMF vapours deteriorate the crystallinity, phase, and optical, morphological and structural properties of the perovskite films in a very short time, but due to the difference in solvent property values acetone affects the perovskite properties differently. Polar protic 2-propanol and water vapours moderately affect the perovskite properties. However 2-propanol can solvate the organic cation CH3NH3 + more efficiently as compared to water and a considerable difference was found in the film properties especially the morphology at the nanoscale. Nonpolar chlorobenzene vapour minutely affects the perovskite morphology but toluene was found to enhance perovskite crystallinity. Solvent properties can be effectively used to interpret the coordination ability of a solvent. The present study can be immensely useful in understanding the effects of different solvent vapours and also their use for post-deposition processing (like solvent vapour annealing) to improve their properties.

3.
ACS Appl Mater Interfaces ; 8(14): 9247-53, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26990151

RESUMEN

Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λ(EL) = 698-709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA