Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 174(4): e13760, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36004734

RESUMEN

Recent studies of chloroplast-localized Sec14-like protein (CPSFL1, also known as phosphatidylinositol transfer protein 7, PITP7) showed that CPSFL1 is necessary for photoautotropic growth and chloroplast vesicle formation in Arabidopsis (Arabidopsis thaliana). Here, we investigated the functional roles of CPSFL1/PITP7 using two A. thaliana mutants carrying a putative null allele (pitp7-1) and a weak allele (pitp7-2), respectively. PITP7 transcripts were undetectable in pitp7-1 and less abundant in pitp7-2 than in the wild-type (WT). The severity of mutant phenotypes, such as plant developmental abnormalities, levels of plastoquinone-9 (PQ-9) and chlorophylls, photosynthetic protein complexes, and photosynthetic performance, were well related to PITP7 transcript levels. The pitp7-1 mutation was seedling lethal and was associated with significantly lower levels of PQ-9 and major photosynthetic proteins. pitp7-2 plants showed greater susceptibility to high-intensity light stress than the WT, attributable to defects in nonphotochemical quenching and photosynthetic electron transport. PITP7 is specifically bound to phosphatidylinositol phosphates (PIPs) in lipid-binding assays in vitro, and the point mutations R82, H125, E162, or K233 reduced the binding affinity of PITP7 to PIPs. Further, constitutive expression of PITP7H125Q or PITP7E162K in pitp7-1 homozygous plants restored autotrophic growth in soil but without fully complementing the mutant phenotypes. Consistent with a previous study, our results demonstrate that PITP7 is essential for plant development, particularly the accumulation of PQ-9 and photosynthetic complexes. We propose a possible role for PITP7 in membrane trafficking of hydrophobic ligands such as PQ-9 and carotenoids through chloroplast vesicle formation or direct binding involving PIPs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mutación , Fotosíntesis/genética , Desarrollo de la Planta , Plastoquinona/metabolismo
2.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652646

RESUMEN

Exploring genetic methods to improve yield in grain crops such as rice (Oryza sativa) is essential to help meet the needs of the increasing population. Here, we report that rice ONAC096 affects grain yield by regulating leaf senescence and panicle number. ONAC096 expression increased rapidly in rice leaves upon the initiation of aging- and dark-induced senescence. Two independent T-DNA insertion mutants (onac096-1 and onac096-2) with downregulated ONAC096 expression retained their green leaf color during natural senescence in the field, thus extending their photosynthetic capacity. Reverse-transcription quantitative PCR analysis showed that ONAC096 upregulated genes controlling chlorophyll degradation and leaf senescence. Repressed OsCKX2 (encoding cytokinin oxidase/dehydrogenase) expression in the onac096 mutants led to a 15% increase in panicle number without affecting grain weight or fertility. ONAC096 mediates abscisic acid (ABA)-induced leaf senescence by upregulating the ABA signaling genes ABA INSENSITIVE5 and ENHANCED EM LEVEL. The onac096 mutants showed a 16% increase in grain yield, highlighting the potential for using this gene to increase grain production.


Asunto(s)
Grano Comestible/genética , Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Mutación , Oryza/crecimiento & desarrollo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
3.
Front Bioeng Biotechnol ; 11: 1099574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911197

RESUMEN

Objective: Otitis media (OM) is an infectious and inflammatory disease of the middle ear (ME) that often recurs and requires long-term antibiotic treatment. Light emitting diode (LED)-based devices have shown therapeutic efficacy in reducing inflammation. This study aimed to investigate the anti-inflammatory effects of red and near-infrared (NIR) LED irradiation on lipopolysaccharide (LPS)-induced OM in rats, human middle ear epithelial cells (HMEECs), and murine macrophage cells (RAW 264.7). Methods: An animal model was established by LPS injection (2.0 mg/mL) into the ME of rats via the tympanic membrane. A red/NIR LED system was used to irradiate the rats (655/842 nm, intensity: 102 mW/m2, time: 30 min/day for 3 days and cells (653/842 nm, intensity: 49.4 mW/m2, time: 3 h) after LPS exposure. Hematoxylin and eosin staining was performed to examine pathomorphological changes in the tympanic cavity of the ME of the rats. Enzyme-linked immunosorbent assay, immunoblotting, and RT-qPCR analyses were used to determine the mRNA and protein expression levels of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α). Mitogen-activated protein kinases (MAPKs) signaling was examined to elucidate the molecular mechanism underlying the reduction of LPS-induced pro-inflammatory cytokines following LED irradiation. Results: The ME mucosal thickness and inflammatory cell deposits were increased by LPS injection, which were reduced by LED irradiation. The protein expression levels of IL-1ß, IL-6, and TNF-α were significantly reduced in the LED-irradiated OM group. LED irradiation strongly inhibited the production of LPS-stimulated IL-1ß, IL-6, and TNF-α in HMEECs and RAW 264.7 cells without cytotoxicity in vitro. Furthermore, the phosphorylation of ERK, p38, and JNK was inhibited by LED irradiation. Conclusion: This study demonstrated that red/NIR LED irradiation effectively suppressed inflammation caused by OM. Moreover, red/NIR LED irradiation reduced pro-inflammatory cytokine production in HMEECs and RAW 264.7 cells through the blockade of MAPK signaling.

4.
Front Plant Sci ; 9: 364, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616070

RESUMEN

In rice (Oryza sativa), moderate leaf rolling increases photosynthetic competence and raises grain yield; therefore, this important agronomic trait has attracted much attention from plant biologists and breeders. However, the relevant molecular mechanism remains unclear. Here, we isolated and characterized Rolled Fine Striped (RFS), a key gene affecting rice leaf rolling, chloroplast development, and reactive oxygen species (ROS) scavenging. The rfs-1 gamma-ray allele and the rfs-2 T-DNA insertion allele of RFS failed to complement each other and their mutants had similar phenotypes, producing extremely incurved leaves due to defective development of vascular cells on the adaxial side. Map-based cloning showed that the rfs-1 mutant harbors a 9-bp deletion in a gene encoding a predicted CHD3/Mi-2 chromatin remodeling factor belonging to the SNF2-ATP-dependent chromatin remodeling family. RFS was expressed in various tissues and accumulated mainly in the vascular cells throughout leaf development. Furthermore, RFS deficiency resulted in a cell death phenotype that was caused by ROS accumulation in developing leaves. We found that expression of five ROS-scavenging genes [encoding catalase C, ascorbate peroxidase 8, a putative copper/zinc superoxide dismutase (SOD), a putative SOD, and peroxiredoxin IIE2] decreased in rfs-2 mutants. Western-blot and chromatin immunoprecipitation (ChIP) assays demonstrated that rfs-2 mutants have reduced H3K4me3 levels in ROS-related genes. Loss-of-function in RFS also led to multiple developmental defects, affecting pollen development, grain filling, and root development. Our results suggest that RFS is required for many aspects of plant development and its function is closely associated with epigenetic regulation of genes that modulate ROS homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA