Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chemistry ; 29(42): e202301036, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37150751

RESUMEN

Hydrogen peroxide (H2 O2 ) electrosynthesis via the 2e- Oxygen Reduction Reaction (ORR) represents a highly challenging, environmentally friendly and cost-effective alternative to the current anthraquinone-based technology. Various lightweight element hetero-doped carbon nanostructures are promising and cheap metal-free electrocatalysts for H2 O2 synthesis, particularly those containing O-functionalities. The exact role of O-containing functional groups as electroactive sites for the process remains debated if not highly controversial. Herein, we have reported on the covalent exohedral functionalization of the outer surface of extra-pure multi-walled carbon nanotubes (MWCNTs) with discrete O-functional groups as a unique approach to prepare selective electrocatalysts for the process. This kind of decoration has added fundamental tiles to the puzzling structure/reactivity relationship of O-containing carbon-based catalysts for ORR, clearing doubts on the controversial role of hydroxyl/phenol groups as key functionalities for the design of more performing 2e- ORR electrocatalysts.

2.
Chemistry ; 29(61): e202301740, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37522641

RESUMEN

The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading. This study describes the development of a highly active and reusable palladium-based catalyst on alumina (Pd8 /Al2 O3 ) for Suzuki cross-coupling reactions. An octanuclear tiara-like palladium complex was selected as active phase precursor to give isolated Pd-clusters of ca. 1 nm in size on Al2 O3 . The catalyst was thoroughly characterised by several complementary techniques to assess its structural and chemical nature. The high specific activity of the catalyst has allowed to carry out the cross-coupling reaction in 30 min using only 0.12 mol % of Pd loading under very mild and green reaction conditions. Screening of various substrates and selectivity tests, combined with recycling and benchmarking experiments, have been used to highlight the great potentialities of this new Pd8 /Al2 O3 catalyst.

3.
Chem Rev ; 121(17): 10559-10665, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34255488

RESUMEN

There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Catálisis , Porosidad , Compuestos de Silicona/química , Carbono , Óxidos , Dióxido de Silicio/química
4.
Chemistry ; 27(14): 4746-4754, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33368713

RESUMEN

Aiming at extending the tagged zinc bipyrazolate metal-organic frameworks (MOFs) family, the ligand 3,3'-diamino-4,4'-bipyrazole (3,3'-H2 L) has been synthesized in good yield. The reaction with zinc(II) acetate hydrate led to the related MOF Zn(3,3'-L). The compound is isostructural with its mono(amino) analogue Zn(BPZNH2 ) and with Zn(3,5-L), its isomeric parent built with 3,5-diamino-4,4'-bipyrazole. The textural analysis has unveiled its micro-/mesoporous nature, with a BET area of 463 m2 g-1 . Its CO2 adsorption capacity (17.4 wt. % CO2 at pCO2 = 1 bar and T = 298 K) and isosteric heat of adsorption (Qst = 24.8 kJ mol-1 ) are comparable to that of Zn(3,5-L). Both Zn(3,3'-L) and Zn(3,5-L) have been tested as heterogeneous catalysts in the reaction of CO2 with the epoxides epichlorohydrin and epibromohydrin to give the corresponding cyclic carbonates at T = 393 K and pCO2 = 5 bar under solvent- and co-catalyst-free conditions. In general, the conversions recorded are higher than those found for Zn(BPZNH2 ), proving that the insertion of an extra amino tag in the pores is beneficial for the epoxidation catalysis. The best catalytic match has been observed for the Zn(3,5-L)/epichlorohydrin couple, with 64 % conversion and a TOF of 5.3 mmol(carbonate) (mmolZn )-1 h-1 . To gain better insights on the MOF-epoxide interaction, the crystal structure of the [epibromohydrin@Zn(3,3'-L)] adduct has been solved, confirming the existence of Br⋅⋅⋅(H)-N non-bonding interactions. To our knowledge, this study represents the first structural determination of a [epibromohydrin@MOF] adduct.

5.
Inorg Chem ; 59(21): 15832-15841, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33073570

RESUMEN

The bicyclic ditopic linker 2,2'-biselenophene-5,5'-dicarboxylic acid (H2SpSp), specifically designed for metal-organic framework (MOF) construction, has been synthesized in good yield and fully characterized. The corresponding zirconium MOF (Zr-MOF) [Zr6O4(OH)4(SpSp)3.8Cl4.4] (1; where missing linkers are replaced by chloride anions as shown by X-ray fluorescence and elemental analysis) is isostructural with its bithiophene and bithiazole analogues. Starting from 1, an extension of the biselenophene-based Zr-MOF family has been successfully achieved, exploiting the structural analogy of the five-membered heterocycles selenophene, thiophene, and thiazole. Thus, three mixed-linker MOFs containing variable amounts of different bis(heterocyclic) dicarboxylic acids have been prepared and fully characterized: the two double-mixed [Zr6O4(OH)4(SpSp)2.6(TpTp)1.3Cl4.2] (2; H2TpTp = 2,2'-bithiophene-5,5'-dicarboxylic acid) and [Zr6O4(OH)4(SpSp)2(TzTz)1.8Cl4.4] (3; H2TzTz = 2,2'-bithiazole-5,5'-dicarboxylic acid) materials, as well as the triple-mixed [Zr6O4(OH)4(SpSp)1.6(TpTp)1.2(TzTz)1.4Cl3.6] (4) compound. The four MOFs are luminescent under UV irradiation, exhibiting emission wavelengths falling in the blue-green visible region, as observed for their constitutive linkers. These materials open new horizons in the preparation of porous luminescent sensors or multicolor emitters for light-emitting diodes.

6.
Inorg Chem ; 59(12): 8161-8172, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32453584

RESUMEN

Three metal-organic frameworks with the general formula Co(BPZX) (BPZX2- = 3-X-4,4'-bipyrazolate, X = H, NH2, NO2) constructed with ligands having different functional groups on the same skeleton have been employed as heterogeneous catalysts for aerobic liquid-phase oxidation of cumene with O2 as oxidant. O2 adsorption isotherms collected at pO2 = 1 atm and T = 195 and 273 K have cast light on the relative affinity of these catalysts for dioxygen. The highest gas uptake at 195 K is found for Co(BPZ) (3.2 mmol/g (10.1 wt % O2)), in line with its highest BET specific surface area (926 m2/g) in comparison with those of Co(BPZNH2) (317 m2/g) and Co(BPZNO2) (645 m2/g). The O2 isosteric heat of adsorption (Qst) trend follows the order Co(BPZ) > Co(BPZNH2) > Co(BPZNO2). Interestingly, the selectivity in the cumene oxidation products was found to be dependent on the tag present in the catalyst linker: while cumene hydroperoxide (CHP) is the main product obtained with Co(BPZ) (84% selectivity to CHP after 7 h, pO2 = 4 bar, and T = 363 K), further oxidation to 2-phenyl-2-propanol (PP) is observed in the presence of Co(BPZNH2) as the catalyst (69% selectivity to PP under the same experimental conditions).

7.
Chemistry ; 25(42): 9920-9929, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31090244

RESUMEN

The hydrogenolysis of mono- and dinuclear PdII hydroxides was investigated both experimentally and computationally. It was found that the dinuclear µ-hydroxide complexes {[(PCNR )Pd]2 (µ-OH)}(OTf) (PCNH =1-[3-[(di-tert-butylphosphino)methyl]phenyl]-1H-pyrazole; PCNMe =1-[3-[(di-tert-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole) react with H2 to form the analogous dinuclear hydride species {[(PCNR )Pd]2 (µ-H)}(OTf). The dinuclear µ-hydride complexes were fully characterized, and are rare examples of structurally characterized unsupported singly bridged µ-H PdII dimers. The {[(PCNMe )Pd]2 (µ-OH)}(OTf) hydrogenolysis mechanism was investigated through experiments and computations. The hydrogenolysis of the mononuclear complex (PCNH )Pd-OH resulted in a mixed ligand dinuclear species [(PCNH )Pd](µ-H)[(PCC)Pd] (PCC=a dianionic version of PCNH bound through phosphorus P, aryl C, and pyrazole C atoms) generated from initial ligand "rollover" C-H activation. Further exposure to H2 yields the bisphosphine Pd0 complex Pd[(H)PCNH ]2 . When the ligand was protected at the pyrazole 5-position in the (PCNMe )Pd-OH complex, no hydride formed under the same conditions; the reaction proceeded directly to the bisphosphine Pd0 complex Pd[(H)PCNMe ]2 . Reaction mechanisms for the hydrogenolysis of the monomeric and dimeric hydroxides are proposed.

8.
Chemistry ; 24(50): 13170-13180, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028544

RESUMEN

The metal-organic frameworks (MOFs) M(BPZNO2 ) (M=Co, Cu, Zn; H2 BPZNO2 =3-nitro-4,4'-bipyrazole) were prepared through solvothermal routes and were fully investigated in the solid state. They showed good thermal stability both under a N2 atmosphere and in air, with decomposition temperatures peaking up to 663 K for Zn(BPZNO2 ). Their crystal structure is characterized by 3D networks with square (M=Co, Zn) or rhombic (M=Cu) channels decorated by polar NO2 groups. As revealed by N2 adsorption at 77 K, they are micro-mesoporous materials with BET specific surface areas ranging from 400 to 900 m2 g-1 . Remarkably, under the mild conditions of 298 K and 1.2 bar, Zn(BPZNO2 ) adsorbs 21.8 wt % CO2 (4.95 mmol g-1 ). It shows a Henry CO2 /N2 selectivity of 15 and an ideal adsorbed solution theory (IAST) selectivity of 12 at p=1 bar. As a CO2 adsorbent, this compound is the best-performing MOF to date among those bearing a nitro group as a unique chemical tag. High-resolution powder X-ray diffraction at 298 K and different CO2 loadings revealed, for the first time in a NO2 -functionalized MOF, the insurgence of primary host-guest interactions involving the C(3)-NO2 moiety of the framework and the oxygen atoms of carbon dioxide, as confirmed by Grand Canonical Monte Carlo simulations. This interaction mode is markedly different from that observed in NH2 -functionalized MOFs, for which the carbon atom of CO2 is involved.

9.
Molecules ; 23(7)2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941846

RESUMEN

The selective oxidation of H2S to elemental sulfur was carried out on a NiS2/SiCfoam catalyst under reaction temperatures between 40 and 80 °C using highly H2S enriched effluents (from 0.5 to 1 vol.%). The amphiphilic properties of SiC foam provide an ideal support for the anchoring and growth of a NiS2 active phase. The NiS2/SiC composite was employed for the desulfurization of highly H2S-rich effluents under discontinuous mode with almost complete H2S conversion (nearly 100% for 0.5 and 1 vol.% of H2S) and sulfur selectivity (from 99.6 to 96.0% at 40 and 80 °C, respectively), together with an unprecedented sulfur-storage capacity. Solid sulfur was produced in large aggregates at the outer catalyst surface and relatively high H2S conversion was maintained until sulfur deposits reached 140 wt.% of the starting catalyst weight. Notably, the spent NiS2/SiCfoam catalyst fully recovered its pristine performance (H2S conversion, selectivity and sulfur-storage capacity) upon regeneration at 320 °C under He, and thus, it is destined to become a benchmark desulfurization system for operating in discontinuous mode.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Sulfuro de Hidrógeno/química , Níquel/química , Compuestos de Silicona/química , Catálisis , Frío , Oxidación-Reducción , Azufre/química
10.
Inorg Chem ; 56(8): 4296-4307, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28345899

RESUMEN

Two Co(I) hydrides containing the tripodal polyphosphine ligand EP3, (κ4-EP3)Co(H) [E(CH2CH2PPh2)3; E = N (1), P (2)], have been exploited as ammonia borane (NH3BH3, AB) dehydrogenation catalysts in THF solution at T = 55 °C. The reaction has been analyzed experimentally through multinuclear (11B, 31P{1H}, 1H) NMR and IR spectroscopy, kinetic rate measurements, and kinetic isotope effect (KIE) determination with deuterated AB isotopologues. Both complexes are active in AB dehydrogenation, albeit with different rates and efficiency. While 1 releases 2 equiv of H2 per equivalent of AB in ca. 48 h, with concomitant borazine formation as the final "spent fuel", 2 produces 1 equiv of H2 only per equivalent of AB in the same reaction time, along with long-chain poly(aminoboranes) as insoluble byproducts. A DFT modeling of the first AB dehydrogenation step has been performed, at the M06//6-311++G** level of theory. The combination of the kinetic and computational data reveals that a simultaneous B-H/N-H activation occurs in the presence of 1, after a preliminary AB coordination to the metal center. In 2, no substrate coordination takes place, and the process is better defined as a sequential BH3/NH3 insertion process on the initially formed [Co]-NH2BH3 amidoborane complex. Finally, the reaction of 1 and 2 with NH-acids [AB and Me2NHBH3 (DMAB)] has been followed via VT-FTIR spectroscopy (in the -80 to +50 °C temperature range), with the aim of gaining a deeper experimental understanding of the dihydrogen bonding interactions that are at the origin of the observed H2 evolution.

11.
Chimia (Aarau) ; 71(9): 568-572, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30188286

RESUMEN

The last few years have witnessed a wonderful technological renaissance that boosted the development of carbon-based nanomaterials (CNMs) doped with light heteroelements and featuring hierarchical porous architectures as valuable metal-free catalysts for a number of key industrial transformations. To date, several approaches to their synthesis have been developed, although many of them lack any real control of the final doping and composition. In contrast, chemical functionalization offers a unique and powerful tool to tailor CNMs' chemical and electronic surface properties as a function of their downstream application in catalysis. Different catalytic processes (hydrolysis/esterification/transesterification reactions, C-C bond forming reactions, CO2 derivatization into products of added value and electrochemical oxygen reduction reactions (ORR)) can be conveniently promoted by these materials. In addition, selected examples from this series offer a valuable platform for the in-depth comprehension of the underlying reaction mechanisms. This perspective article offers an overview on the main examples of ad hoc chemically decorated CNMs successfully exploited as metal-free catalysts, highlighting at the same time the importance of the surface chemistry control for the design of more active, metal-free and single-phase heterogeneous catalysts.

12.
Chemistry ; 21(43): 15349-53, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26332894

RESUMEN

A series of azido-dyes were synthesized through Knoevenagel reactions of an azido-BODIPY with aromatic aldehydes. The nature of the substituents allowed the fine tuning of their spectroscopic properties. The dyes were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs), bearing terminal triple bond groups, by CuAAC reactions, affording fluorescent materials. This decoration allowed the efficient determination of the internalization of the ox-MWCNT derivatives by different model cancer cells, such as MCF7.

13.
Chemistry ; 20(12): 3487-99, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24616174

RESUMEN

Neutral Y(III) dialkyl complexes supported by tridentate N(-) ,N,N monoanionic methylthiazole- or benzothiazole-amidopyridinate ligands have been prepared and completely characterized. Studies on their stability in solution revealed progressive rearrangement of the coordination sphere in the benzothiazole-containing system through an unprecedented metal-to-ligand alkyl migration and subsequent thiazole ring opening. Attempts to synthesize hydrido species from the dialkyl precursor led to the generation of a dimeric yttrium species stabilized by a trianionic N(-) ,N,N(-) ,S(-) ligand as the result of metal-to-ligand hydride migration with chemoselective thiazole ring opening and subsequent dimerization through intermolecular addition of the residual YH group to the imino fragment of a second equivalent of the ring-opened intermediate. DFT calculations were used to elucidate the thermodynamics and kinetics of the process, in support of the experimental evidence. Finally, all isolated yttrium complexes, especially their cationic forms prepared by activation with the Lewis acid Ph3 C(+) [B(C6 F5 )4 ](-) , were found to be good candidate catalysts for intramolecular hydroamination/cyclization reactions. Their catalytic performance with a number of primary and secondary amino alkenes was assessed.

14.
ChemSusChem ; : e202400660, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847086

RESUMEN

The two-electron electrocatalytic oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2) is a valuable alternative to the more conventional and energy-intensive anthraquinone process. From a circularity viewpoint, metal-free catalysts constitute a sustainable alternative for the process. In particular, lightweight hetero-doped C-materials are cost-effective and easily scalable samples that replace - more and more frequently - the use of critical raw elements in the preparation of highly performing (electro)catalysts. Anyhow, their large-scale exploitation in industrial processes still suffers from technical limits of samples upscale and reproducibility other than a still moderate comprehension of their action mechanism in the process. This concept article offers a comprehensive and exhaustive "journey" through the most representative lightweight hetero-doped C-based electrocatalysts and their performance in the 2e- ORR process. It provides an interpretation of phenomena at the triple-phase interface of solid catalyst, liquid electrolyte and gaseous oxygen based on the doping-driven generation of ideal electronic microenvironments at the catalyst surface.

15.
Chempluschem ; 89(7): e202300785, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38436555

RESUMEN

This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages. Heat treatments indicated stable pore size and increasing volume/surface area over time. The resulting N-doped carbon structures were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and adsorbents for gases and organic vapors. Materials from the templated precursor pathway exhibited high electrocatalytic performance in ORR, analyzed using Rotating Ring-Disk electrode (RRDE). Enhanced adsorption of m-xylene was attributed to wide micropores, while satisfactory CO2 adsorption efficiency was linked to specific morphological features and a relatively high content of N-sites within the C-networks. This research contributes valuable insights into the synthesis and applications of N-doped nanoporous carbon materials, highlighting their potential in electrocatalysis and adsorption processes.

16.
Chemistry ; 19(15): 4906-21, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23418031

RESUMEN

Neutral Zr(IV) and Hf(IV) diamido complexes stabilized by unsymmetrical dianionic N,C,N' pincer ligands have been prepared through the simplest and convenient direct metal-induced Caryl-H bond activation. Simple ligand modification has contributed to highlight the non-innocent role played by the donor atom set in the control of the cyclometallation kinetics. The as-prepared bis-amido catalysts were found to be good candidates for the intramolecular hydroamination/cyclization of primary aminoalkenes. The ability of these compounds to promote such a catalytic transformation efficiently (by providing, in some cases, fast and complete substrate conversion at room temperature) constitutes a remarkable step forward toward catalytic systems that can operate at relatively low catalyst loading and under milder reaction conditions. Kinetic studies and substrate-scope investigations, in conjunction with preliminary DFT calculations on the real systems, were used to elucidate the effects of the substrate substitution on the catalyst performance and to support the most reliable mechanistic path operative in the hydroamination reaction.

17.
Angew Chem Int Ed Engl ; 52(23): 5956-60, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23661412

RESUMEN

Illuminating films of a porous chitosan matrix containing gold nanorods and thermosensitive micelles loaded with a chemical stimulates local photothermal conversion of the gold nanorods. The heat produced activates the ejection of the chemical from the micelles (see scheme), and causes the transient permeabilization of adjacent cell membranes, resulting in a selective cellular uptake of the released chemical with control over spatiotemporal parameters and dosage.


Asunto(s)
Nanotubos/química , Técnicas Biosensibles/instrumentación , Oro , Luz , Micelas , Procesos Fotoquímicos
18.
ChemSusChem ; 16(5): e202201859, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36331078

RESUMEN

Ni-based catalysts prepared through impregnation of depleted uranium oxides (DU) have successfully been employed as highly efficient, selective, and durable systems for CO2 hydrogenation to substituted natural gas (SNG; CH4 ) under an autothermal regime. The thermo-physical properties of DU and the unique electronic structure of f-block metal-oxides combined with a nickel active phase, generated an ideal catalytic assembly for turning waste energy back into useful energy for catalysis. In particular, Ni/UOx stood out for the capacity of DU matrix to control the extra heat (hot-spots) generated at its surface by the highly exothermic methanation process. At odds with the benchmark Ni/γ-Al2 O3 catalyst, the double action played by DU as a "thermal mass" and "dopant" for the nickel active phase unveiled the unique performance of Ni/UOx composites as CO2 methanation catalysts. The ability of the weakly radioactive ceramic (UOx ) to harvest waste heat for more useful purposes was demonstrated in practice within a rare example of a highly effective and long-term methanation operated under autothermal regime (i. e., without any external heating source). This finding is an unprecedented example that allows a real step-forward in the intensification of "low-temperature" methanation with an effective reduction of energy wastes. At the same time, the proposed catalytic technology can be regarded as an original approach to recycle and bring to a second life a less-severe nuclear by-product (DU), providing a valuable alternative to its more costly long-term storage or controlled disposal.

19.
ChemSusChem ; 16(5): e202300238, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36905108

RESUMEN

Invited for this month's cover are collaborating teams from academia-the French ICPEES and IS2M of Centre national de la recherche scientifique (CNRS) and the Italian ICCOM of Consiglio Nazionale delle Ricerche (CNR)-and industry with the participation of the ORANO group. The cover picture shows a CO2 -to-CH4 process promoted by nickel nanoparticles supported on depleted uranium oxide under exceptionally low temperature values or autothermal conditions. The Research Article itself is available at 10.1002/cssc.202201859.

20.
Chemistry ; 18(2): 671-87, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22147645

RESUMEN

This work provides original insights to the better understanding of the complex structure-activity relationship of Zr(IV)-pyridylamido-based olefin polymerization catalysts and highlights the importance of the metal-precursor choice (Zr(NMe(2))(4) vs. Zr(Bn)(4)) to prepare precatalysts of unambiguous identity. A temperature-controlled and reversible σ-bond metathesis/protonolysis reaction is found to take place on the Zr(IV)-amido complexes in the 298-383 K temperature range, changing the metal coordination sphere dramatically (from a five-coordinated tris-amido species stabilized by bidentate monoanionic {N,N(-)} ligands to a six-coordinated bis-amido-mono-amino complexes featured by tridentate dianionic {N(-),N,C(-)} ligands). Well-defined neutral Zr(IV)-pyridylamido complexes have been prepared from Zr(Bn)(4) as metal source. Their cationic derivatives [Zr(IV) N(-),N,C(-)}Bn](+)[B(C(6)F(5))(4)](-) have been successfully applied to the room-temperature polymerization of 1-hexene with productivities up to one order of magnitude higher than those reported for the related Hf(IV) state-of-the-art systems. Most importantly, a linear increase of the poly(1-hexene) M(n) values (30-250 kg mol(-1)) has been observed upon catalyst aging. According to that, the major active species (responsible for the increased M(n) polymer values) in the aged catalyst solution, has been identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA