Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Cancer ; 145(4): 901-915, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30653260

RESUMEN

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Lipasa/metabolismo , Lípidos/fisiología , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Lipoproteínas HDL/metabolismo , Células MCF-7 , Persona de Mediana Edad , Regulación hacia Arriba/fisiología
2.
Nucleic Acids Res ; 45(1): 54-66, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899623

RESUMEN

The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.


Asunto(s)
Cromatina/metabolismo , ADN/genética , Regulación de la Expresión Génica , Histonas/genética , Aprendizaje Automático , Factores de Transcripción/genética , Algoritmos , Sitios de Unión , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Línea Celular Tumoral , Cromatina/química , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células K562 , Especificidad de Órganos , Cultivo Primario de Células , Análisis de Componente Principal , Unión Proteica , Factores de Transcripción/metabolismo
3.
NMR Biomed ; 31(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29206323

RESUMEN

High-resolution magic angle spinning (HR MAS) nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study metabolite levels in human breast cancer tissue, assessing, for instance, correlations with prognostic factors, survival outcome or therapeutic response. However, the impact of intratumoral heterogeneity on metabolite levels in breast tumor tissue has not been studied comprehensively. More specifically, when biopsy material is analyzed, it remains questionable whether one biopsy is representative of the entire tumor. Therefore, multi-core sampling (n = 6) of tumor tissue from three patients with breast cancer, followed by lipid (0.9- and 1.3-ppm signals) and metabolite quantification using HR MAS 1 H NMR, was performed, resulting in the quantification of 32 metabolites. The mean relative standard deviation across all metabolites for the six tumor cores sampled from each of the three tumors ranged from 0.48 to 0.74. This was considerably higher when compared with a morphologically more homogeneous tissue type, here represented by murine liver (0.16-0.20). Despite the seemingly high variability observed within the tumor tissue, a random forest classifier trained on the original sample set (training set) was, with one exception, able to correctly predict the tumor identity of an independent series of cores (test set) that were additionally sampled from the same three tumors and analyzed blindly. Moreover, significant differences between the tumors were identified using one-way analysis of variance (ANOVA), indicating that the intertumoral differences for many metabolites were larger than the intratumoral differences for these three tumors. That intertumoral differences, on average, were larger than intratumoral differences was further supported by the analysis of duplicate tissue cores from 15 additional breast tumors. In summary, despite the observed intratumoral variability, the results of the present study suggest that the analysis of one, or a few, replicates per tumor may be acceptable, and supports the feasibility of performing reliable analyses of patient tissue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Metabolómica , Espectroscopía de Protones por Resonancia Magnética/métodos , Análisis de Varianza , Neoplasias de la Mama/patología , Femenino , Humanos , Lípidos/química , Metaboloma , Análisis de Componente Principal
4.
J Immunol ; 197(8): 3406-3414, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591321

RESUMEN

E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Metilación de ADN , Fucosiltransferasas/metabolismo , Inflamación/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Metilación de ADN/genética , Fucosiltransferasas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Anal Bioanal Chem ; 409(6): 1591-1606, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896396

RESUMEN

Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.


Asunto(s)
Betaína/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Metaboloma , Espectroscopía de Protones por Resonancia Magnética/métodos , Transcriptoma , Animales , Eliminación de Gen , Ácido Láctico/metabolismo , Leptina/genética , Leptina/metabolismo , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica/métodos , Ratones
6.
Arch Toxicol ; 90(10): 2513-29, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27339419

RESUMEN

It is well known that isolation and cultivation of primary hepatocytes cause major gene expression alterations. In the present genome-wide, time-resolved study of cultivated human and mouse hepatocytes, we made the observation that expression changes in culture strongly resemble alterations in liver diseases. Hepatocytes of both species were cultivated in collagen sandwich and in monolayer conditions. Genome-wide data were also obtained from human NAFLD, cirrhosis, HCC and hepatitis B virus-infected tissue as well as mouse livers after partial hepatectomy, CCl4 intoxication, obesity, HCC and LPS. A strong similarity between cultivation and disease-induced expression alterations was observed. For example, expression changes in hepatocytes induced by 1-day cultivation and 1-day CCl4 exposure in vivo correlated with R = 0.615 (p < 0.001). Interspecies comparison identified predominantly similar responses in human and mouse hepatocytes but also a set of genes that responded differently. Unsupervised clustering of altered genes identified three main clusters: (1) downregulated genes corresponding to mature liver functions, (2) upregulation of an inflammation/RNA processing cluster and (3) upregulated migration/cell cycle-associated genes. Gene regulatory network analysis highlights overrepresented and deregulated HNF4 and CAR (Cluster 1), Krüppel-like factors MafF and ELK1 (Cluster 2) as well as ETF (Cluster 3) among the interspecies conserved key regulators of expression changes. Interventions ameliorating but not abrogating cultivation-induced responses include removal of non-parenchymal cells, generation of the hepatocytes' own matrix in spheroids, supplementation with bile salts and siRNA-mediated suppression of key transcription factors. In conclusion, this study shows that gene regulatory network alterations of cultivated hepatocytes resemble those of inflammatory liver diseases and should therefore be considered and exploited as disease models.


Asunto(s)
Redes Reguladoras de Genes , Hepatocitos/metabolismo , Hepatopatías/genética , Cultivo Primario de Células , Transcriptoma , Animales , Células Cultivadas , Estudio de Asociación del Genoma Completo , Hepatocitos/inmunología , Humanos , Hepatopatías/etiología , Hepatopatías/inmunología , Hepatopatías/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de la Especie
7.
Int J Mol Sci ; 15(4): 5762-73, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24714086

RESUMEN

Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease.


Asunto(s)
Acetiltransferasas/genética , Carcinoma Hepatocelular/metabolismo , Ácidos Grasos/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acetiltransferasas/biosíntesis , Animales , Carcinoma Hepatocelular/patología , Colina , Dieta , Dietilnitrosamina , Modelos Animales de Enfermedad , Elongasas de Ácidos Grasos , Humanos , Inflamación , Neoplasias Hepáticas/patología , Metionina , Ratones , Ratones Endogámicos DBA , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Mensajero/biosíntesis
8.
Epigenetics Chromatin ; 16(1): 30, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415213

RESUMEN

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.


Asunto(s)
Epigenómica , Hepatocitos , Ratones , Animales , Hepatocitos/metabolismo , Hígado/metabolismo , Etanol , Epigénesis Genética , Metilación de ADN
9.
Biol Chem ; 393(8): 785-99, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22944681

RESUMEN

Shiga toxins (Stxs) are composed of an enzymatically active A subunit (StxA) and a pentameric B subunit (StxB) that preferentially binds to the glycosphingolipid (GSL) globo\xadtriaosylceramide (Gb3Cer/CD77) and to a reduced extent to globotetraosylceramide (Gb4Cer). The identification of Gb3Cer as a tumor-associated GSL in human pancreatic cancer prompted us to investigate the expression of Gb3Cer and Gb4Cer in 15 human pancreatic ductal adenocarcinoma cell lines derived from primary tumors and liver, ascites, and lymph node metastases. Thin-layer chromatography overlay assays revealed the occurrence of Gb3Cer in all and of Gb4Cer in the majority of cell lines, which largely correlated with transcriptional expression analysis of Gb3Cer and Gb4Cer synthases. Prominent Gb3Cer and Gb4Cer lipoform heterogeneity was based on ceramides carrying predominantly C16:0 and C24:0/C24:1 fatty acids. Stx2-mediated cell injury ranged from extremely high sensitivity (CD(50) of 0.94 pg/ml) to high refractiveness (CD(50) of 5.8 µg/ml) and to virtual resistance portrayed by non-determinable CD(50) values even at the highest Stx2 concentration (10 µg/ml) applied. Importantly, Stx2-mediated cytotoxicity did not correlate with Gb3Cer expression (the preferential Stx receptor), suggesting that the GSL receptor content does not primarily determine cell sensitivity and that other, yet to be delineated, cellular factors might influence the responsiveness of cancer cells.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Supervivencia Celular/efectos de los fármacos , Globósidos/genética , Toxina Shiga II/farmacología , Trihexosilceramidas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/secundario , Ascitis/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Globósidos/análisis , Globósidos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Ganglios Linfáticos/patología , Toxina Shiga II/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/química , Trihexosilceramidas/análisis , Trihexosilceramidas/metabolismo
10.
Cell Rep ; 36(8): 109526, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433051

RESUMEN

Epigenetic modifications (e.g. DNA methylation) in NAFLD and their contribution to disease progression and extrahepatic complications are poorly explored. Here, we use an integrated epigenome and transcriptome analysis of mouse NAFLD hepatocytes and identify alterations in glyoxylate metabolism, a pathway relevant in kidney damage via oxalate release-a harmful waste product and kidney stone-promoting factor. Downregulation and hypermethylation of alanine-glyoxylate aminotransferase (Agxt), which detoxifies glyoxylate, preventing excessive oxalate accumulation, is accompanied by increased oxalate formation after metabolism of the precursor hydroxyproline. Viral-mediated Agxt transfer or inhibiting hydroxyproline catabolism rescues excessive oxalate release. In human steatotic hepatocytes, AGXT is also downregulated and hypermethylated, and in NAFLD adolescents, steatosis severity correlates with urinary oxalate excretion. Thus, this work identifies a reduced capacity of the steatotic liver to detoxify glyoxylate, triggering elevated oxalate, and provides a mechanistic explanation for the increased risk of kidney stones and chronic kidney disease in NAFLD patients.


Asunto(s)
Epigenoma , Glioxilatos/metabolismo , Hepatocitos/metabolismo , Hiperoxaluria/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transcriptoma , Animales , Epigenómica , Perfilación de la Expresión Génica , Humanos , Hiperoxaluria/genética , Masculino , Ratones , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/genética , Factores de Riesgo
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1068-1069: 239-244, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29111333

RESUMEN

Due to medical relevance and a direct correlation with some diseases, accurate quantification of oxalic acid in different complex matrices is required. Effective chromatographic separation of this strong carboxylic acid was achieved by ion exclusion chromatography (IELC). Sensitive and selective detection was carried out by means of electrospray ionization-tandem mass spectrometry. Furthermore, it was shown that the isobaric interference of lactic acid is chromatographically resolved. Structurally similar compounds like glyoxylic acid and glycolic acid were baseline separated as well. The application of stable isotope dilution analysis with 13C2 oxalic acid facilitated precise quantification. The developed method was validated with a reference oxalate sample of human urine diluted to a range of 10-500µM. Finally, the applicability of this method was demonstrated on complex matrices, like mouse urine and supernatants of primary mouse hepatocyte cell cultures.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Hepatocitos/química , Ácido Oxálico/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Hepatocitos/metabolismo , Marcaje Isotópico , Límite de Detección , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oxálico/metabolismo , Ácido Oxálico/orina , Cultivo Primario de Células , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA