Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 23(2): 1562-1571, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30484958

RESUMEN

The role of tumour microenvironment in neoplasm initiation and malignant evolution has been increasingly recognized. However, the bone marrow mesenchymal stromal cell (BMMSC) contribution to disease progression remains poorly explored. We previously reported that the expression of serine protease inhibitor kunitz-type2 (SPINT2/HAI-2), an inhibitor of hepatocyte growth factor (HGF) activation, is significantly lower in BMMSC from myelodysplastic syndromes (MDS) patients compared to healthy donors (HD). Thus, to investigate whether this loss of expression was due to SPINT2/HAI-2 methylation, BMMSC from MDS and de novo acute myeloid leukaemia (de novo AML) patients were treated with 5-Azacitidine (Aza), a DNA methyltransferase inhibitor. In MDS- and de novo AML-BMMSC, Aza treatment resulted in a pronounced SPINT2/HAI-2 levels up-regulation. Moreover, Aza treatment of HD-BMMSC did not improve SPINT2/HAI-2 levels. To understand the role of SPINT2/HAI-2 down-regulation in BMMSC physiology, SPINT2/HAI-2 expression was inhibited by lentivirus. SPINT2 underexpression resulted in an increased production of HGF by HS-5 stromal cells and improved survival of CD34+ de novo AML cells. We also observed an increased adhesion of de novo AML hematopoietic cells to SPINT2/HAI-2 silenced cells. Interestingly, BMMSC isolated from MDS and de novo AML patients had increased expression of the integrins CD49b, CD49d, and CD49e. Thus, SPINT2/HAI-2 may contribute to functional and morphological abnormalities of the microenvironment niche and to stem/progenitor cancer cell progression. Hence, down-regulation in SPINT2/HAI-2 gene expression, due to methylation in MDS-BMMSC and de novo AML-BMMSC, provides novel insights into the pathogenic role of the leukemic bone marrow microenvironment.


Asunto(s)
Azacitidina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Glicoproteínas de Membrana/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Integrina alfa2/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células Madre Neoplásicas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
2.
Ann Otol Rhinol Laryngol ; 126(12): 819-828, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29078705

RESUMEN

OBJECTIVES: Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. METHODS: Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. RESULTS: Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. CONCLUSIONS: This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.


Asunto(s)
Cartílago Auricular , Animales , Bovinos , Cartílago Auricular/anatomía & histología , Cartílago Auricular/metabolismo , Cartílago Auricular/fisiología , Humanos , Modelos Animales , Conejos , Ratas , Porcinos , Ingeniería de Tejidos
3.
Cartilage ; 8(4): 439-443, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28934875

RESUMEN

Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.

4.
Tissue Eng Part A ; 20(5-6): 1012-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24124666

RESUMEN

External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm(2)) directly from a small population of donor cells (20,000-40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model.


Asunto(s)
Cartílago Auricular/anatomía & histología , Cartílago Auricular/fisiología , Cartílago Elástico/anatomía & histología , Cartílago Elástico/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Reactores Biológicos , Colágeno/metabolismo , Cartílago Auricular/ultraestructura , Cartílago Elástico/ultraestructura , Elastina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Inmunohistoquímica , Proteoglicanos/metabolismo , Conejos
5.
Cartilage ; 3(4): 364-73, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26069646

RESUMEN

OBJECTIVE: While mechanical stimuli can be used to enhance the properties of engineered cartilage, a promising alternative may be to directly harness the underlying mechanotransduction pathways responsible. Our initial studies on the adenosine triphosphate (ATP)-purinergic receptor pathway demonstrated that stimulation by exogenous ATP improved tissue growth and properties but elicited matrix turnover under high doses (250 µM) potentially due to the accumulation of extracellular inorganic pyrophosphate (ePPi). Therefore, the purpose of this study was to identify the mechanism of ATP-mediated catabolism and determine a therapeutic dose to maximize the anabolic effect. DESIGN: Isolated bovine articular chondrocytes were seeded in high-density, 3-dimensional culture supplemented with varying doses of ATP for 4 weeks. The effects on biosynthesis, matrix metalloproteinase 13 (MMP-13) protein activity, and PPi accumulation were determined. Separate monolayer experiments were conducted to determine the effect of ePPi on MMP-13 activity. RESULTS: High doses of ATP resulted in an increase in ePPi accumulation (by 54%) and MMP-13 activity (by 39%). Monolayer experiments confirmed a link between increased ePPi accumulation and MMP-13 activity, which appeared to require calcium and was inhibited by the MEK1/2 inhibitor U0126. Cultures supplemented with 62.5 to 125 µM ATP favored an anabolic response, which represented the therapeutic dose range. CONCLUSIONS: A therapeutic dose range of exogenous ATP to improve the properties of engineered cartilage has been identified, and a possible catabolic mechanism involving excess PPi was determined. Future research into PPi signal transduction and pathological crystal formation is necessary to maximize the beneficial effect of exogenous ATP on chondrocyte cultures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA