Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 134(4): 933-940, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825647

RESUMEN

Sympathetic cholinergic nerve cotransmission is widely accepted as the mechanism of cutaneous active vasodilation (CAVD) during whole body passive heating (passive heating). However, recent research suggests that there may be mechanistic differences in CAVD to heating, depending on the modality of thermal loading. It is unknown whether sympathetic cholinergic cotransmission explains CAVD during exercise. This study sought to confirm the role of cholinergic nerves in CAVD during passive heating and expand these findings to exercise. It was hypothesized that CAVD during both exercise and passive heating would be abolished by cholinergic nerve blockade. Eight young (18-30 yr) recreationally active individuals exercised (1 h seated cycling at 60% V̇o2peak) and were passively heated (∼1 h seated passive heating with mean skin temperature clamped at 39°C by water-perfused suit), in randomized order on separate days. Cholinergic nerves were blocked via Botox ∼2 wk prior to the study. Skin blood flow was assessed using laser Doppler flowmetry and expressed as percent of maximum cutaneous vascular conductance (%CVCmax). At the end of exercise/passive heating, internal temperature had increased by ∼0.7°C. The %CVCmax at the Botox-treated sites (exercise: 19 ± 6 and passive heating: 15 ± 14%CVCmax) was significantly less (P < 0.001) than at the untreated sites (exercise: 35 ± 11 and passive heating: 38 ± 6%CVCmax), but there were no differences between exercise and passive heating (modality, P = 0.909; modality-Botox interaction, P = 0.230). We conclude that CAVD during both exercise and passive heating is mediated by sympathetic cholinergic nerves, a critical thermoregulatory mechanism that appears to be independent of the thermal loading modality.NEW & NOTEWORTHY Our study establishes the primacy of cholinergic nerves to cutaneous active vasodilation during exercise and confirms this model during passive heating using a crossover study design. In addition, the mode of heating, whether passive or exercise induced, did not change the sensitivity of the cholinergic component of the thermoeffector response to increased internal temperature. Thus, cutaneous active vasodilator nerves are responsible for similar skin blood flow responses regardless of how thermal loading is accomplished.


Asunto(s)
Toxinas Botulínicas Tipo A , Vasodilatación , Humanos , Colinérgicos , Estudios Cruzados , Fiebre , Calefacción , Flujo Sanguíneo Regional/fisiología , Piel/irrigación sanguínea , Vasodilatación/fisiología
2.
Front Physiol ; 14: 1142567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960159

RESUMEN

Introduction: Oral bicarbonate loading improves the buffering of metabolic acidosis and may improve exercise performance but can also result in gastric distress. Momentous' PR Lotion contains a novel composition intended to provide a transdermal delivery vehicle for sodium bicarbonate which could allow the same ergogenic effect without the gastric distress. The present study explored the effect of transdermal delivery of sodium bicarbonate in a resting condition. Methods: We measured the pH from intramuscular dialysate, via microdialysis, of the vastus lateralis during a 2 h application of PR Lotion (40 g of lotion per leg) in 9 subjects (3 women, 6 men). Venous blood samples were obtained for serum pH before and after application. A placebo time control was also performed in 4 subjects (2 women, 2 men). We hypothesized that PR Lotion application would increase pH of intramuscular dialysate. Results: PR Lotion resulted in a rise in pH of 0.13 ± 0.04 units (p < 0.05), which translates to a 28% reduction in [H+]. Increases in serum pH were smaller (∼9%) yet consistent (p < 0.05). In contrast, placebo time control pH tended to decrease (p = 0.08). The effect of PR Lotion on pH tended to correlate with the dose per kg body weight of each individual (r = 0.70, p = 0.08). Conclusion: These observations support the idea of transdermal bicarbonate delivery impacting pH buffering both systemically and intramuscularly. Further work investigating these potential benefits in an exercising model would be critical to establishing PR Lotion's utility as an ergogenic aid.

3.
J Appl Physiol (1985) ; 131(5): 1543-1551, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617821

RESUMEN

Critical power (CP) delineates the heavy and severe exercise intensity domains, and sustained work rates above CP result in an inexorable progression of oxygen uptake to a maximal value and, subsequently, the limit of exercise tolerance. The finite work capacity above CP, W', is defined by the curvature constant of the power-duration relationship. Heavy or severe exercise in a hot environment generates additional challenges related to the rise in body core temperature (Tc) that may impact CP and W'. The purpose of this study was to determine the effect of elevated Tc on CP and W'. CP and W' were estimated by end-test power (EP; mean of final 30 s) and work above end-test power (WEP), respectively, from 3-min "all-out" tests performed on a cycle ergometer. Volunteers (n = 8, 4 female) performed the 3-min tests during a familiarization visit and two experimental visits (thermoneutral vs. hot, randomized crossover design). Before experimental 3-min tests, the subjects were immersed in water (thermoneutral: 36°C for 30 min; hot: 40.5°C until Tc was ≥38.5°C). Mean Tc was significantly greater in the hot condition than in the thermoneutral condition (38.5 ± 0.0°C vs. 37.4 ± 0.2°C; means ± SD, P < 0.01). All 3-min tests were performed in an environmental chamber [thermoneutral: 18°C, 45% relative humidity (RH); hot: 38 °C, 40% RH]. EP was similar between thermoneutral (239 ± 57 W) and hot (234 ± 66 W; P = 0.55) conditions. WEP was similar between thermoneutral (10.9 ± 3.0 kJ) and hot conditions (9.3 ± 3.6; P = 0.19). These results suggest that elevated Tc has no significant impact on EP or WEP.NEW & NOTEWORTHY The parameters of the power-duration relationship (critical power and W') estimated by a 3-min all-out test were not altered by elevated body core temperature as compared with a thermoneutral condition.


Asunto(s)
Consumo de Oxígeno , Resistencia Física , Ejercicio Físico , Prueba de Esfuerzo , Femenino , Humanos , Temperatura
4.
Cytokine X ; 2(3): 100033, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33604558

RESUMEN

The purpose of this study was to evaluate the effects of aerobic exercise in the heat on circulating concentrations of tumor necrosis factor (TNF)-α, soluble TNF receptors (STNFR1&2), and surface expression of TNFR1&2 on monocyte subpopulations. Twelve recreationally active Caucasian men (24.4 ± 3.4 yrs.; 180.0 ± 6.8 cm; 81.5 ± 8.0 kg; 47.2 ± 4.8 mL·kg-1·min-1) completed an exercise protocol in three environmental conditions: high temperature/low humidity [HTLH; 35 °C, 20% relative humidity (RH)]; high temperature/moderate humidity (HTMH; 35 °C, 45%RH); and moderate temperature/moderate humidity (MTMH; 22 °C, 45%RH). Each protocol consisted of a 60-minute cycling trial at 60% VO2max, a 15-minute rest, and a time-to-exhaustion trial at 90% VO2max (TTE). Blood was sampled before (PRE), immediately after (POST) the 60-minute trial, immediately post-TTE (PTTE), and one-hour post-TTE (REC). Circulating TNF-α and STNFR1&2 were assayed. TNFR1&2 expression on monocyte subsets was measured by flow cytometry on a subset of participants (n = 8). TNF-α area under the curve with respect to increase (AUCi) was greater during HTMH compared to MTMH and HTLH. STNFR1 concentration was greater during HTMH compared to MTMH. With all trials combined, STNFR1 concentration increased from PRE to POST, PTTE, and REC. TNFR1 expression on non-classical monocytes was greater during HTMH compared to HTLH while TNFR2 expression was lower during HTLH compared to both MTMH and HTMH. Data suggest that exercise in the heat increases circulating TNF-α and STNFR1 concentration concomitantly. Furthermore, non-classical monocyte expression of TNFRs are impacted by temperature and humidity during exercise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA