Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Epidemiology ; 33(6): 757-766, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944145

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Limited evidence suggests ALS diagnosis may be associated with air pollution exposure and specifically traffic-related pollutants. METHODS: In this population-based case-control study, we used 3,937 ALS cases from the Danish National Patient Register diagnosed during 1989-2013 and matched on age, sex, year of birth, and vital status to 19,333 population-based controls free of ALS at index date. We used validated predictions of elemental carbon (EC), nitrogen oxides (NO x ), carbon monoxide (CO), and fine particles (PM 2.5 ) to assign 1-, 5-, and 10-year average exposures pre-ALS diagnosis at study participants' present and historical residential addresses. We used an adjusted Bayesian hierarchical conditional logistic model to estimate individual pollutant associations and joint and average associations for traffic-related pollutants (EC, NO x , CO). RESULTS: For a standard deviation (SD) increase in 5-year average concentrations, EC (SD = 0.42 µg/m 3 ) had a high probability of individual association with increased odds of ALS (11.5%; 95% credible interval [CrI] = -1.0%, 25.6%; 96.3% posterior probability of positive association), with negative associations for NO x (SD = 20 µg/m 3 ) (-4.6%; 95% CrI = 18.1%, 8.9%; 27.8% posterior probability of positive association), CO (SD = 106 µg/m 3 ) (-3.2%; 95% CrI = 14.4%, 10.0%; 26.7% posterior probability of positive association), and a null association for nonelemental carbon fine particles (non-EC PM 2.5 ) (SD = 2.37 µg/m 3 ) (0.7%; 95% CrI = 9.2%, 12.4%). We found no association between ALS and joint or average traffic pollution concentrations. CONCLUSIONS: This study found high probability of a positive association between ALS diagnosis and EC concentration. Further work is needed to understand the role of traffic-related air pollution in ALS pathogenesis.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/etiología , Teorema de Bayes , Monóxido de Carbono/efectos adversos , Estudios de Casos y Controles , Dinamarca/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Óxidos de Nitrógeno/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
2.
Ecotoxicol Environ Saf ; 232: 113229, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131582

RESUMEN

BACKGROUND: Over 57 million people in Bangladesh have been chronically exposed to arsenic-contaminated drinking water. They also face environmental exposure to elevated levels of cadmium (Cd), manganese (Mn), and lead (Pb), all of which have been previously observed in environmental and biological samples for this population. These metals have been linked to adverse neurocognitive outcomes in adults and children, though their effects on adolescents are not yet fully characterized. Additionally, previous studies have linked selenium (Se) to protective effects against the toxicity of these other metals. OBJECTIVES: To examine the associations between mixed metals exposure and cognitive function in Bangladeshi adolescents. METHODS: The Metals, Arsenic, & Nutrition in Adolescents study (MANAs) is a cross-sectional study of 572 Bangladeshi adolescents aged 14-16 years, whose parents were enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS). Biosamples were collected from these adolescents for measurement of whole blood metalloid/metal levels of As, Cd, Mn, Pb, and Se. Participants also completed an abbreviated version of The Cambridge Neuropsychological Test Automated Battery (CANTAB), a cognitive function test designed to measure performance across several aspects of executive function. Linear regression was used to examine associations for each metal while controlling for the other metals. Bayesian Kernel Machine Regression (BKMR) assessed the overall mixture effect in addition to confirming the effects of individual metal components observed via linear regression. RESULTS: Linear regression revealed negative associations for Spatial Working Memory and both As and Mn (As B=-2.40, Mn B=-5.31, p < 0.05). We also observed negative associations between Cd and Spatial Recognition Memory (B=-2.77, p < 0.05), and Pb and Delayed Match to Sample, a measure of visual recognition and memory (B=-3.67, p < 0.05). Finally, we saw a positive association for Se and Spatial Span Length (B=0.92, p < 0.05). BKMR results were largely consistent with the regression analysis, showing meaningful associations for individual metals and CANTAB subtests, but no overall mixture effect. Via BKMR, we observed negative associations between Pb and Delayed Match to Sample, and Cd and Spatial Recognition Memory; this analysis also showed positive associations for Se and the Planning, Reaction Time, and Spatial Span subtests. BKMR posterior inclusion probability consistently reported that Se, the only component of the mixture to show a positive association with cognition, was the most important member of the mixture. CONCLUSIONS: Overall, we found Se to be positively associated with cognition, while Mn and As were linked to poorer working memory, and Cd and Pb were associated with poorer visual recognition and memory. Our observations are consistent with previous reports on the effects of these metal exposures in adults and children. Our findings also suggest agreement between linear regression and BKMR methods for analyzing metal mixture exposures. Additional studies are needed to evaluate the impact of mixed metals exposure on adverse health and poorer cognition later in life for those exposed during adolescence. Findings also suggest that metal exposure mitigation efforts aimed at adolescents might influence lifelong cognitive outcomes in regions where environmental exposure to metals is endemic.


Asunto(s)
Exposición a Riesgos Ambientales , Metales , Adolescente , Adulto , Teorema de Bayes , Niño , Cognición , Estudios Transversales , Exposición a Riesgos Ambientales/análisis , Humanos , Estudios Longitudinales , Metales/análisis
3.
Chem Soc Rev ; 50(22): 12450-12550, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34590638

RESUMEN

Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.

4.
Angew Chem Int Ed Engl ; 60(12): 6518-6525, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33350554

RESUMEN

The optical and electrochemical properties of a series of polyoxometalate (POM) oxoclusters decorated with two bodipy (boron-dipyrromethene) light-harvesting units were examined. Evaluated here in this polyanionic donor-acceptor system is the effect of the solvent and associated counterions on the intramolecular photoinduced electron transfer. The results show that both solvents and counterions have a major impact upon the energy of the charge-transfer state by modifying the solvation shell around the POMs. This modification leads to a significantly shorter charge separation time in the case of smaller counterion and slower charge recombination in a less polar solvent. These results were rationalized in terms of Marcus theory and show that solvent and counterion both affect the driving force for photoinduced electron transfer and the reorganization energy. This was corroborated with theoretical investigations combining DFT and molecular dynamics simulations.

5.
Inorg Chem ; 59(3): 1611-1621, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31940179

RESUMEN

We report a comparison between a series of zinc and tin porphyrins as photosensitizers for photochemical hydrogen evolution using cobaloxime complexes as molecular catalysts. Among all the chromophores tested, only the positively charged zinc porphyrin, [ZnTMePyP4+]Cl4, and the neutral tin porphyrin derivatives, Sn(OH)2TPyP, Sn(Cl2)TPP-[COOMe]4, and Sn(Cl2)TPP-[PO(OEt)2]4, were photocatalytically active. Hydrogen evolution was strongly affected by the pH value as well as the different concentrations of both the sensitizer and the catalyst. A comprehensive photophysical and electrochemical investigation was conducted in order to examine the mechanism of photocatalysis. The results derived from this study establish fundamental criteria with respect to the design and synthesis of porphyrin derivatives for their application as photosensitizers in photoinduced hydrogen evolution.

6.
J Chem Phys ; 153(18): 184704, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187448

RESUMEN

The development of p-type dye-sensitized solar cells (p-DSSCs) offers an opportunity to assemble tandem photoelectrochemical solar cells with higher efficiencies than TiO2-based photoanodes, pioneered by O'Regan and Grätzel [Nature 353, 737-740 (1991)]. This paper describes an investigation into the behavior at the interfaces in p-DSSCs, using a series of BODIPY dyes, BOD1-3. The three dyes have different structural and electronic properties, which lead to different performances in p-DSSCs. We have applied photoelectron spectroscopy and transient absorption spectroscopy to rationalize these differences. The results show that the electronic orbitals of the dyes are appropriately aligned with the valence band of the NiO semiconductor to promote light-induced charge transfer, but charge-recombination is too fast for efficient dye regeneration by the electrolyte. We attribute this fast recombination, which limits the efficiency of the solar cells, to the electronic structure of the dye and the presence of Ni3+ recombination sites at the NiO surface.

7.
Philos Trans A Math Phys Eng Sci ; 377(2152): 20180338, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31280722

RESUMEN

A series of zinc tetraphenylporphyrin photosensitizers furnished with three different anchoring groups, benzoic acid, phenylphosphonate and coumarin-3-carboxylic acid, were prepared using 'click' methodology. All three gave modest performances in liquid junction devices with I3-/I- as the electrolyte. The distinct spectroscopic properties of the porphyrins allowed a detailed investigation of the adsorption behaviour and kinetics for charge transfer at the NiO|porphyrin interface. The adsorption behaviour was modelled using the Langmuir isotherm model and the phosphonate anchoring group was found to have the highest affinity for NiO (6.65 × 104 M-1) and the fastest rate of adsorption (2.46 × 107 cm2 mol-1 min-1). The photocurrent of the p-type dye-sensitized solar cells increased with increasing dye loading and corresponding light harvesting efficiency of the electrodes. Coordinating the zinc to a pyridyl-functionalized fullerene (C60PPy) extended the charge-separated state lifetime from ca 200 ps to 4 ns and a positive improvement in the absorbed photon to current conversion efficiency was observed. Finally, we confirmed the viability of electron transfer from the appended C60PPy to phenyl-C61-butyric acid methyl ester, a typical electron transporting layer in organic photovoltaics. This has implications for assembling efficient solid-state tandem solar cells in the future. This article is part of a discussion meeting issue 'Energy materials for a low carbon future'.

8.
Environ Res ; 178: 108681, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31520830

RESUMEN

OBJECTIVES: Evidence of the association between inorganic arsenic (As) exposure, especially early-life exposure, and blood pressure (BP) in adolescence is limited. We examined the association of As exposure during early childhood, childhood, and adolescence with BP in adolescence. METHODS: We conducted a cross-sectional study of 726 adolescents aged 14-17 (mean 14.75) years whose mothers were participants in the Bangladesh Health Effects of Arsenic Longitudinal Study (HEALS). Adolescents' BP was measured at the time of their recruitment between December 2012 and December 2016. We considered maternal urinary As (UAs), repeatedly measured during childhood, as proxy measures of early childhood (<5 years old, A1) and childhood (5-12 years old, A2) exposure. Adolescents' current UAs was collected at the time of recruitment (14-17 years of age, A3). RESULTS: Every doubling of UAs at A3 and maternal UAs at A1 was positively associated with a difference of 0.7-mmHg (95% confidence interval [CI]: 0.1, 1.3) and a 0.7-mmHg (95% CI: 0.05, 1.4) in SBP, respectively. These associations were stronger in adolescents with a BMI above the median (17.7 kg/m2) than those with a BMI below the median (P for interaction = 0.03 and 0.03, respectively). There was no significant association between any of the exposure measures and DBP. The Weighted Quantile Sum (WQS) regression confirmed that adolescents' UAs at A3 and maternal UAs at A1 contributed the most to the overall effect of As exposure at three life stages on SBP. Mixture analyses using Bayesian Kernel Machine Regression identified UAs at A3 as a significant contributor to SBP and DBP independent of other concurrent blood levels of cadmium, lead, manganese, and selenium. CONCLUSION: Our findings suggest an association of current exposure and early childhood exposure to As with higher BP in adolescents, which may be exacerbated by higher BMI at adolescence.


Asunto(s)
Arsénico/metabolismo , Presión Sanguínea/fisiología , Agua Potable/química , Exposición a Riesgos Ambientales/estadística & datos numéricos , Adolescente , Arsénico/análisis , Bangladesh , Teorema de Bayes , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino
9.
Environ Health ; 18(1): 76, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462251

RESUMEN

BACKGROUND: Numerous methods exist to analyze complex environmental mixtures in health studies. As an illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome. METHODS: With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001-2002), we used unsupervised methods including clustering to identify profiles of similarly exposed participants, and Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) to identify common exposure patterns. We also employed supervised learning techniques, including penalized, weighted quantile sum (WQS), and Bayesian kernel machine (BKMR) regressions, to identify potentially toxic agents, and characterize nonlinear associations, interactions, and the overall mixture effect. RESULTS: Clustering separated participants into high, medium, and low POP exposure groups; longer log-LTL was found among those with high exposure. The first PCA component represented overall POP exposure and was positively associated with log-LTL. Two EFA factors, one representing furans and the other PCBs 126 and 118, were positively associated with log-LTL. Penalized regression methods selected three congeners in common (PCB 126, PCB 118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS found a positive overall effect of the POP mixture and identified six POPs as potentially toxic agents (furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs 99, 126, 169). BKMR found a positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear associations with PCBs 126 and 169, and a positive overall effect of the mixture, but no interactions among congeners. CONCLUSIONS: Using different methods, we identified patterns of POP exposure, potentially toxic agents, the absence of interaction, and estimated the overall mixture effect. These applications and results may serve as a guide for mixture method selection based on specific research questions.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/efectos adversos , Homeostasis del Telómero/efectos de los fármacos , Acortamiento del Telómero/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Leucocitos , Masculino , Persona de Mediana Edad , Proyectos de Investigación/estadística & datos numéricos , Adulto Joven
10.
Chem Soc Rev ; 46(20): 6194-6209, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28829067

RESUMEN

The arguments for converting sunlight and H2O to H2 to provide cleaner fuels and chemicals are very powerful. However, there is still no efficient means of direct solar energy conversion to H2 on a large scale despite a large research effort worldwide. This review describes strategies to develop robust devices which exploit the selectivity of a molecular catalyst but avoids the use of sacrificial electron donors by adsorbing them onto an electrode surface. By assembling the photocathodes with photoanodes, the electrons provided by water oxidation are used to reduce H+ to H2. By separating the functions of light absorption, charge transport and catalysis between the colloidal semiconductor and molecular components, the activity of each can be optimised. However, the complexity of the system requires advanced experimental techniques to evaluate the performance. Current understanding of the factors governing electron transfer across the interface between the semiconductor, dye and catalyst is described and future directions and challenges for this field are outlined.

11.
Chemphyschem ; 18(4): 406-414, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-27862774

RESUMEN

Three dyes for p-type dye-sensitised solar cells containing a novel doubly anchored pyrrole donor group were synthesised and their solar cell performances were evaluated. Dye 1 was comprised of a phenyl-thiophene linker and a maleonitrile acceptor, which has been established as an effective motif in other push-pull dyes. Two boron dipyrromethane analogues, dyes 2 and 3, were made with different linker groups to compare their effect on the behaviour of these dyes adsorbed onto nickel oxide (dye|NiO) under illumination. The photoexcited states of dye|NiO were probed using resonance Raman spectroscopy and compared to dyes anchored using the conventional 4-aminobenzoic acid moiety (P1 and 4). All three components, the anchor, the linker and the acceptor group were found to alter both the electronic structure following excitation and the overall solar cell performance. The bodipy acceptor gave a better performance than the maleonitrile acceptor when the pyrrole anchor was used, which is the opposite of the triphenylamine push-pull dyes. The linker group was found to have a large influence on the short-circuit current and efficiency of the p-type cells constructed.

12.
Faraday Discuss ; 198: 449-461, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28286896

RESUMEN

This article describes a comparison between the photophysical properties of two charge-transfer dyes adsorbed onto NiO via two different binding moieties. Transient spectroscopy measurements suggest that the structure of the anchoring group affects both the rate of charge recombination between the dye and NiO surface and the rate of dye regeneration by an iodide/triiodide redox couple. This is consistent with the performance of the dyes in p-type dye sensitised solar cells. A key finding was that the recombination rate differed in the presence of the redox couple. These results have important implications on the study of electron transfer at dye|semiconductor interfaces for solar energy applications.

13.
Phys Chem Chem Phys ; 19(29): 18831-18835, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28707686

RESUMEN

Lindqvist polyoxometalate (POM) additives increase VOC in p-type DSSCs by up to 140%, yielding substantial efficiency gains for poorly matched dyes and redox mediators. For better dye/electrolyte combinations, these gains are typically outweighed by losses in JSC. Charge lifetime and transient IR measurements show that this is due to retardation of both recombination and electron transfer to the mediator, and a positive shift in the NiO valence band edge. The POMs also show their own, limited sensitizing effect.

14.
Phys Chem Chem Phys ; 19(11): 7877-7885, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28262897

RESUMEN

Understanding what influences the formation and lifetime of charge-separated states is key to developing photoelectrochemical devices. This paper describes the use of time-resolved infrared absorption spectroscopy (TRIR) to determine the structure and lifetime of the intermediates formed on photoexcitation of two organic donor-π-acceptor dyes adsorbed to the surface of NiO. The donor and π-linker of both dyes is triphenylamine and thiophene but the acceptors differ, maleonitrile (1) and bodipy (2). Despite their structural similarities, dye 1 outperforms 2 significantly in devices. Strong transient bands in the fingerprint region (1 and 2) and nitrile region (2300-2000 cm-1) for 1 enabled us to monitor the structure of the excited states in solution or adsorbed on NiO (in the absence and presence of electrolyte) and the corresponding kinetics, which are on a ps-ns timescale. The results are consistent with rapid (<1 ps) charge-transfer from NiO to the excited dye (1) to give exclusively the charge-separated state on the timescale of our measurements. Conversely, the TRIR experiments revealed that multiple species are present shortly after excitation of the bodipy chromophore in 2, which is electronically decoupled from the thiophene linker. In solution, excitation first populates the bodipy singlet excited state, followed by charge transfer from the triphenylamine to the bodipy. The presence and short lifetime (τ ≈ 30 ps) of the charge-transfer excited state when 2 is adsorbed on NiO (2|NiO) suggests that charge separation is slower and/or less efficient in 2|NiO than in 1|NiO. This is consistent with the difference in performance between the two dyes in dye-sensitized solar cells and photoelectrochemical water splitting devices. Compared to n-type materials such as TiO2, less is understood regarding electron transfer between dyes and p-type metal oxides such as NiO, but it is evident that fast charge-recombination presents a limit to the performance of photocathodes. This is also a major challenge to photocatalytic systems based on a "Z-scheme", where the catalysis takes place on a µs-s timescale.

15.
Phys Chem Chem Phys ; 18(2): 1059-70, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26660278

RESUMEN

A series of photosensitizers for NiO-based dye-sensitized solar cells is presented. Three model compounds containing a triphenylamine donor appended to a boron dipyrromethene (bodipy) chromophore have been successfully prepared and characterised using emission spectroscopy, electrochemistry and spectroelectrochemistry, to ultimately direct the design of dyes with more complex structures. Carboxylic acid anchoring groups and thiophene spacers were appended to the model compounds to provide five dyes which were adsorbed onto NiO and integrated into dye-sensitized solar cells. Solar cells incorporating the simple Bodipy-CO2H dye were surprisingly promising relative to the more complex dye 4. Cell performances were improved with dyes which had increased electronic communication between the donor and acceptor, achieved by incorporating a less hindered bodipy moiety. Further increases in performances were obtained from dyes which contained a thiophene spacer. Thus, the best performance was obtained for 7 which generated a very promising photocurrent density of 5.87 mA cm(-2) and an IPCE of 53%. Spectroelectrochemistry combined with time-resolved transient absorption spectroscopy were used to determine the identity and lifetime of excited state species. Short-lived (ps) transients were recorded for 4, 5 and 7 which are consistent with previous studies. Despite a longer lived (25 ns) charge-separated state for 6/NiO, there was no increase in the photocurrent generated by the corresponding solar cell.

16.
Phys Chem Chem Phys ; 18(4): 3358, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26728685

RESUMEN

Correction for 'Design and characterisation of bodipy sensitizers for dye-sensitized NiO solar cells' by Gareth H. Summers et al., Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/c5cp05177k.

17.
Phys Chem Chem Phys ; 18(16): 10727-38, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-26734947

RESUMEN

We investigated a range of different mesoporous NiO electrodes prepared by different research groups and private firms in Europe to determine the parameters which influence good quality photoelectrochemical devices. This benchmarking study aims to solve some of the discrepancies in the literature regarding the performance of p-DSCs due to differences in the quality of the device fabrication. The information obtained will lay the foundation for future photocatalytic systems based on sensitized NiO so that new dyes and catalysts can be tested with a standardized material. The textural and electrochemical properties of the semiconducting material are key to the performance of photocathodes. We found that both commercial and non-commercial NiO gave promising solar cell and water-splitting devices. The NiO samples which had the two highest solar cell efficiency (0.145% and 0.089%) also gave the best overall theoretical H2 conversion.

18.
Chem Commun (Camb) ; 60(14): 1876-1879, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38273815

RESUMEN

Chemiresitive sensing allows the affordable and facile detection of small molecules such as H2O and CO2. Herein, we report a novel class of Earth-abundant post transition metal substituted Keggin polyoxometalates (POMs) for chemiresistive sensing applications, with conductivities up to 0.01 S cm-1 under 100% CO2 and 65% Relative Humidity (RH).

19.
J Expo Sci Environ Epidemiol ; 34(4): 679-687, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38177333

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive environmental pollutants with a variety of known health effects. While significant work has been completed to estimate personal exposure to PAHs, less has been done to identify sources of these exposures. Comprehensive characterization of reported sources of personal PAH exposure is a critical step to more easily identify individuals at risk of high levels of exposure and for developing targeted interventions based on source of exposure. OBJECTIVE: In this study, we leverage data from a New York (NY)-based birth cohort to identify personal characteristics or behaviors associated with personal PAH exposure and develop models for the prediction of PAH exposure. METHODS: We quantified 61 PAHs measured using silicone wristband samplers in association with 75 questionnaire variables from 177 pregnant individuals. We evaluated univariate associations between each compound and questionnaire variable, conducted regression tree analysis for each PAH compound and completed a principal component analysis of for each participant's entire PAH exposure profile to determine the predictors of PAH levels. RESULTS: Regression tree analyses of individual compounds and exposure mixture identified income, time spent outdoors, maternal age, country of birth, transportation type, and season as the variables most frequently predictive of exposure.


Asunto(s)
Exposición a Riesgos Ambientales , Hidrocarburos Policíclicos Aromáticos , Humanos , Encuestas y Cuestionarios , Femenino , Hidrocarburos Policíclicos Aromáticos/análisis , Exposición a Riesgos Ambientales/análisis , Adulto , Embarazo , Contaminantes Ambientales/análisis , Monitoreo del Ambiente/métodos , New York , Adulto Joven , Estudios de Cohortes , Muñeca , Análisis de Componente Principal
20.
Phys Chem Chem Phys ; 15(7): 2411-20, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23301246

RESUMEN

Photoactive NiO electrodes for cathodic dye-sensitised solar cells (p-DSCs) have been prepared with thicknesses ranging between 0.4 and 3.0 µm by spray-depositing pre-formed NiO nanoparticles on fluorine-doped tin oxide (FTO) coated glass substrates. The larger thicknesses were obtained in sequential sintering steps using a conventional furnace (CS) and a newly developed rapid discharge sintering (RDS) method. The latter procedure is employed for the first time for the preparation of p-DSCs. In particular, RDS represents a scalable procedure that is based on microwave-assisted plasma formation that allows the production in series of mesoporous NiO electrodes with large surface areas for p-type cell photocathodes. RDS possesses the unique feature of transmitting heat from the bulk of the system towards its outer interfaces with controlled confinement of the heating zone. The use of RDS results in a drastic reduction of processing times with respect to other deposition methods that involve heating/calcination steps with associated reduced costs in terms of energy. P1-dye sensitized NiO electrodes obtained via the RDS procedure have been tested in DSC devices and their performances have been analysed and compared with those of cathodic DSCs derived from CS-deposited samples. The largest conversion efficiencies (0.12%) and incident photon-to-current conversion efficiencies, IPCEs (50%), were obtained with sintered NiO electrodes having thicknesses of ~1.5-2.0 µm. In all the devices, the photogenerated holes in NiO live significantly longer (τ(h) ~ 1 s) than have previously been reported for P1-sensitized NiO photocathodes. In addition, P1-sensitised sintered electrodes give rise to relatively high photovoltages (up to 135 mV) when the triiodide-iodide redox couple is used.


Asunto(s)
Colorantes/química , Microondas , Níquel/química , Energía Solar , Rastreo Diferencial de Calorimetría , Técnicas Electroquímicas , Electrodos , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA