Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 122(6): 5842-5976, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35073048

RESUMEN

Benefiting from the impressive increase in fundamental knowledge, the last 20 years have shown a continuous burst of new ideas and consequently a plethora of new catalytic methods for enantioselective radical reactions. This review aims to provide a complete survey of progress achieved over this latter period. The first part of this review focuses on the use of chiral organocatalysts, and these include catalysts covalently linked to the substrate and those that interact with the substrate by weaker interactions like hydrogen bonds. The second part of the review is devoted to transition-metal redox catalysis which is organized according to increasing atomic number for the first-row transition metals (Ti, Cr, Fe, Mn, Co, Ni, Cu). Bioinspired manganese- and iron-mediated hydroxylations and oxidations are also discussed. A specific section is dedicated to the reactivity of Ru, Rh, and Ir complexes as Lewis acids with a special focus on complexes chiral at metal. Absorption of photons result in different events such as energy transfer, single-electron transfer, and hydrogen-atom transfer facilitating the formation of radicals. Organocatalysis has been successfully combined with photocatalysts, a reactivity which has opened new pathways enlarging the number of radical precursors available. The merger of photocatalysis with organo- or metalla-photocatalysis has brought novelty and allowed for the discovery of a large number of original transformations. The use of enzyme-catalyzed reactions involving radical intermediates which also largely benefit from visible-light irradiation are included in the review. This review provides a comprehensive inventory of progress in enantioselective radical reactions with a goal of detailing the reaction mechanisms involved in these transformations such that any nonspecialist could find their own creativity to invent yet unknown applications.


Asunto(s)
Hidrógeno , Ácidos de Lewis , Catálisis , Hidrógeno/química , Oxidación-Reducción , Estereoisomerismo
2.
Angew Chem Int Ed Engl ; : e202405337, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877857

RESUMEN

In this work, six benzothioxanthene-based oxime esters were employed as photoinitiators for photopolymerization with visible light (LED) and sunlight. Their abilities to behave as Type I photoinitiators by mean of a photocleavage mechanism of oxime esters but also in multicomponent photoinitiating system with an iodonium salt (through an electron transfer mechanism) were both explored with the different structures. Due to their broad absorption spectra tailing up 600 nm, photoinitiating properties of the benzothioxanthene-based oxime esters were systematically tested under excitation with low-intensity LED light at wavelengths of 405 nm and 450 nm. Additionally, to the polymerization tests done under artificial light, different benzothioxanthene-based oxime esters were also investigated as solar photoinitiators and displayed a high reactivity in France (Western Europe) even in winter conditions. For the best candidates i.e. the most reactive structures, direct laser write experiments were carried out, evidencing the interest of these structures.

3.
Angew Chem Int Ed Engl ; 63(2): e202315985, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009627

RESUMEN

Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).

4.
J Am Chem Soc ; 145(50): 27437-27449, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38059751

RESUMEN

The environmental impact of plastic waste has been a real problem for the past decades. The incorporation of cleavable bonds in the polymer backbone is a solution to making a commodity polymer degradable. When radical polymerization is used, this approach is made possible by radical ring-opening polymerization (rROP) of a cyclic monomer that allows for the introduction of a weak bond into the polymer backbone. Among the various cyclic monomers that could be used in rROP, thionolactones are promising structures due to the efficiency of the C═S bond to act as a radical acceptor. Nevertheless, only a few structures were reported to be efficient. In this work, we used DFT calculations to gain a better understanding of the radical reactivity of thionolactones, and in particular, we focused on the transfer rate constant ktr value and its ratio with the propagation rate constant kp of the vinyl monomer. The closer to 1, the better is the statistical incorporation of the two comonomers into the backbone. These theoretical results were in good agreement with all of the experimental data reported in the literature. We thus used this approach to understand the key parameters to tune the reactivity of thionolactone to prepare random copolymers. We identified and prepared the 7-phenyloxepane-2-thione (POT) thionolactone that led to statistical copolymers with styrene and acrylate derivatives that were efficiently degraded under accelerated conditions (KOH in THF/MeOH, TBD in THF, or mCPBA in THF), confirming the theoretical approach. The compatibility with RAFT polymerization as well as the homopolymerization behavior of POT was established. This theoretical approach paves the way for the in-silico design of new efficient thionolactones for rROP.

5.
Chemistry ; 29(33): e202300633, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37067351

RESUMEN

The structure of the Viologen-Phenylene-Imidazole (VPI) guest, previously shown to be bound by cucurbit[7]uril (CB[7]) with binding modes depending on pH and silver ions, has been extended by adding hydrophobic groups on the two extremities of VPI before investigations of CB[7] binding by NMR, ITC, X-ray diffraction, UV-vis and fluorescence spectroscopies. With an imidazole station extended by a naphthalene group (VPI-N), binding modes of CB[7] are similar to those previously observed. However, with the viologen extended by a tolyl group (T-VPI), CB[7] preferentially sits on station T, shuttling between the T and P stations at acid pH or after Ag+ addition. The CB[7] ⋅ T-VPI complex thus behaves as a metal-actuated thermodynamic stop-and-go molecular shuttle featured by fast and autonomous ring translocation between two stations and a continuum for fractional station occupancy solely and easily controlled by Ag+ concentration.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Agua , Agua/química , Hidrocarburos Aromáticos con Puentes/química , Viológenos/química , Imidazoles/química , Concentración de Iones de Hidrógeno
6.
Org Biomol Chem ; 21(47): 9433-9442, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37991010

RESUMEN

Previously, we reported a guest molecule containing a viologen (V), a phenylene (P) and an imidazole (I) fragment (VPI) forming a host : guest 2 : 2 complex with cucurbit[8]uril (CB[8]) and an unprecedented 2 : 3 complex with cucurbit[10]uril (CB[10]). To better address the structural features required to form these complexes, two VPI analogues were designed and synthesized: the first with a tolyl (T) group grafted on the V part (T-VPI) and the second with a naphthalene (N) fused on the imidazole (I) part (VPI-N). While VPI-N afforded a discrete well-defined 2 : 2 complex with CB[8] and a 2 : 3 complex with CB[10], T-VPI organized also as a 2 : 2 complex with CB[8] but no well-defined complex was obtained with CB[10]. These complexes were studied by NMR spectroscopy, notably DOSY, which allowed us to estimate binding constants for 2 : 2 complex formation with CB[8], pointing to more stable 2 : 2 complexes with more hydrophobic guests. UV-vis and fluorescence spectroscopy confirmed complex formation, suggesting host-stabilized charge-transfer interactions. Therefore, the simple addition of CB[8] or CB[10] enabled us to control the level of guest stacking (dimer or trimer) using relevant pairs of synthetic hosts through spontaneous host : guest quaternary or quinary self-assembly.

7.
Phys Chem Chem Phys ; 25(15): 10591-10598, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36994909

RESUMEN

The supramolecular self-assembly of s-indacene-1,3,5,7(2H,6H)-tetrone on the Cu(111) surface was investigated under ultrahigh vacuum by room-temperature scanning tunneling microscopy supported by theoretical modelling based on density functional theory. In total, six different phases were found, driven by hydrogen bonding, metal ligand coordination or covalent coupling. Host-guest interactions allowed for the accommodation of molecular or metal clusters inside the open nanoporous patterns. In one phase, molecular trapping was stochastically observed inside the large periodic nanopores created inside the supramolecular network. The three metal-organic networks observed resulted in the creation of different kinds of regular arrays of isolated metal adatoms or adatom clusters with a lattice period larger than 1 nm.

8.
Angew Chem Int Ed Engl ; 62(16): e202302093, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36821431

RESUMEN

Poly(N-acryloylmorpholine) (PNAM)-decorated waterborne nanoparticles comprising a core of either degradable polystyrene (PS) or poly(n-butyl acrylate) (PBA) were synthesized by polymerization-induced self-assembly (PISA) in water. A PNAM bearing a trithiocarbonate chain end (PNAM-TTC) was extended via reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion copolymerization of either styrene (S) or n-butyl acrylate (BA) with dibenzo[c,e]oxepane-5-thione (DOT). Well-defined amphiphilic block copolymers were obtained. The in situ self-assembly of these polymers resulted in the formation of stable nanoparticles. The insertion of thioester units in the vinylic blocks enabled their degradation under basic conditions. The same strategy was then applied to the emulsion copolymerization of BA with DOT using a poly(ethylene glycol) (PEG) equipped with a trithiocarbonate end group, resulting in PEG-decorated nanoparticles with degradable PBA-based cores.

9.
Angew Chem Int Ed Engl ; 62(45): e202310801, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37738223

RESUMEN

A library of phosphoramidite monomers containing a main-chain cleavable alkoxyamine and a side-chain substituent of variable molar mass (i.e. mass tag) was prepared in this work. These monomers can be used in automated solid-phase phosphoramidite chemistry and therefore incorporated periodically as spacers inside digitally-encoded poly(phosphodiester) chains. Consequently, the formed polymers contain tagged cleavable sites that guide their fragmentation in mass spectrometry sequencing and enhance their digital readability. The spacers were all prepared via a seven steps synthetic procedure. They were afterwards tested for the synthesis and sequencing of model digital polymers. Uniform digitally-encoded polymers were obtained as major species in all cases, even though some minor defects were sometimes detected. Furthermore, the polymers were decoded in pseudo-MS3 conditions, thus confirming the reliability and versatility of the spacers library.

10.
Chemistry ; 28(47): e202200809, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35657383

RESUMEN

We use an on-surface synthesis approach to drive the homocoupling reaction of a simple dithiophenyl-functionalized precursor on Cu(111). The C-S activation reaction is initiated at low annealing temperature and yields unsaturated hydrocarbon chains interconnected in a fully conjugated reticulated network. High-resolution atomic force microscopy imaging reveals the opening of the thiophenyl rings and the presence of trans- and cis-oligoacetylene chains as well as pentalene units. The chemical transformations were studied by C 1s and S 2p core level photoemission spectroscopy and supported by theoretical calculations. At higher annealing temperature, additional cyclization reactions take place, leading to the formation of small graphene flakes.

11.
Chemistry ; 28(64): e202201656, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35980006

RESUMEN

The globular and monocationic guest molecule trimethyl-azaphosphatrane (AZAP, a protonated Verkade superbase) was shown to form a host:guest 1 : 1 complex with the cucurbit[10]uril (CB[10]) macrocycle in water. Molecular dynamics calculations showed that CB[10] adopts an 8-shape with AZAP occupying the majority of the internal space, CB[10] contracting around AZAP and leaving a significant part of the cavity unoccupied. This residual space was used to co-include planar and monocationic co-guest (CG) molecules, affording heteroternary CB[10]⋅AZAP⋅CG complexes potentially opening new perspectives in supramolecular chemistry.

12.
Molecules ; 27(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35164071

RESUMEN

Glioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Oligopéptidos/farmacología , Venenos de Escorpión/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dendrímeros/química , Dendrímeros/farmacología , Humanos , Oligopéptidos/química , Venenos de Escorpión/química , Escorpiones
13.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500334

RESUMEN

Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.


Asunto(s)
Venenos de Crotálidos , Neurotoxinas , Animales , Humanos , Neurotoxinas/metabolismo , Tubulina (Proteína)/metabolismo , Crotalus/metabolismo , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
14.
Angew Chem Int Ed Engl ; 61(15): e202117498, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100474

RESUMEN

Aqueous emulsion copolymerizations of dibenzo[c,e]oxepane-5-thione (DOT) were performed with n-butyl acrylate (BA), styrene (S) and a combination of both. In all cases, stable latexes were obtained in less than two hours under conventional conditions; that is in the presence of sodium dodecyl sulfate (SDS) used as surfactant and potassium persulfate (KPS) as initiator. A limited solubility of DOT in BA was observed compared to S, yielding to a more homogeneous integration of DOT units in the PS latex. In both cases, the copolymer could be easily degraded under basic conditions. Emulsion terpolymerization between DOT, BA and S allowed us to produce stable latexes not only composed of degradable chains but also featuring a broad range of glass transition temperatures.

15.
Angew Chem Int Ed Engl ; 61(18): e202117700, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35128770

RESUMEN

Three-dimensional (3D) printing and especially VAT photopolymerization leads to cross-linked materials with high thermal, chemical, and mechanical stability. Nevertheless, these properties are incompatible with requirements of degradability and re/upcyclability. We show here that thionolactone and in particular dibenzo[c,e]-oxepane-5-thione (DOT) can be used as an additive (2 wt %) to acrylate-based resins to introduce weak bonds into the network via a radical ring-opening polymerization process. The low amount of additive makes it possible to modify the printability of the resin only slightly, keep its resolution intact, and maintain the mechanical properties of the 3D object. The resin with additive was used in UV microfabrication and two-photon stereolithography setups and commercial 3D printers. The fabricated objects were shown to degrade in basic solvent as well in a homemade compost. The rate of degradation is nonetheless dependent on the size of the object. This feature was used to prepare 3D objects with support structures that could be easily solubilized.


Asunto(s)
Impresión Tridimensional , Polimerizacion
16.
Angew Chem Int Ed Engl ; 61(49): e202214039, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198650

RESUMEN

Recently, porous organic crystals (POC) based on macrocycles have shown exceptional sorption and separation properties. Yet, the impact of guest presence inside a macrocycle prior to adsorption has not been studied. Here we show that the inclusion of trimethoxybenzyl-azaphosphatrane in the macrocycle cucurbit[8]uril (CB[8]) affords molecular porous host⋅guest crystals (PHGC-1) with radically new properties. Unactivated hydrated PHGC-1 adsorbed iodine spontaneously and selectively at room temperature and atmospheric pressure. The absence of (i) heat for material synthesis, (ii) moisture sensitivity, and (iii) energy-intensive steps for pore activation are attractive attributes for decreasing the energy costs. 1 H NMR and DOSY were instrumental for monitoring the H2 O/I2 exchange. PHGC-1 crystals are non-centrosymmetric and I2 -doped crystals showed markedly different second harmonic generation (SHG), which suggests that iodine doping could be used to modulate the non-linear optical properties of porous organic crystals.

17.
Anal Chem ; 93(35): 12041-12048, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431672

RESUMEN

Because of its speed, sensitivity, and ability to scrutinize individual species, mass spectrometry (MS) has become an essential tool in analytical strategies aimed at studying the degradation behavior of polyesters. MS analyses can be performed prior to the degradation event for structural characterization of initial substrates or after it has occurred to measure the decreasing size of products as a function of time. Here, we show that MS can also be usefully employed during the degradation process by online monitoring the chain solvolysis induced by reactive desorption electrospray ionization (DESI). Cleavage of ester bonds in random copolymers of lactic acid (LA) and glycolic acid (GA) was achieved by electrospraying methanol-containing NaOH onto the substrates. Experimental conditions were optimized to generate methanolysis products of high abundance so that mass spectra can be conveniently processed using Kendrick-based approaches. The same reactive-DESI performance was demonstrated for two sample preparations, solvent casting for soluble samples or pressed pellets for highly crystalline substrates, permitting to compare polymers with LA/GA ratios ranging from 100/0 to 5/95. Analysis of sample fractions collected by size exclusion chromatography showed that methanolysis occurs independently of the original chain size, so data recorded for poly(LA-co-GA) (PLAGA) copolymers with the average molecular weight ranging from 10 to 180 kDa could be safely compared. The average mass of methanolysis products was observed to decrease linearly (R2 = 0.9900) as the GA content increases in PLAGA substrates, consistent with the susceptibility of ester bonds toward solvolysis being higher in GA than in LA. Because DESI only explores the surface of solids, these data do not reflect bulk degradability of the copolymers but, instead, their relative degradability at the molecular level. Based on a "reactive-DESI degradability scale" such as that established here for PLAGA, the proposed method offers interesting perspectives to qualify intrinsic degradability of different polyesters and evaluate their erosion susceptibility or to determine the degradability of those polymers known to degrade via erosion only.


Asunto(s)
Glicoles , Espectrometría de Masa por Ionización de Electrospray , Peso Molecular , Poliésteres , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
18.
Soft Matter ; 17(27): 6552-6565, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34151921

RESUMEN

In this study, poly(ethylene oxide) monomethyl ether (MPEO) of molecular weight of 5000, 10 000, and 20 000 g mol-1 were grafted onto colloidal silica nanoparticles (NPs) of a 27.6 nm diameter using two distinct "grafting to" processes. The first method was based on the coupling reaction of epoxide-end capped MPEO with amine-functionalized silica NPs, while the second method was based on the condensation of triethoxysilane-terminated MPEO onto the unmodified silica NPs. The influence of PEO molecular weight, grafting process and grafting conditions (temperature, reactant concentration, reaction time) on the PEO grafting density was fully investigated. Thermogravimetric analysis (TGA) was used to determine the grafting density which ranged from 0.12 chains per nm2 using the first approach to 1.02 chains per nm2 when using the second approach. 29Si CP/MAS NMR characterization indirectly revealed that above a grafting density value of 0.3 PEO chains per nm2, a dendri-graft PEO network was built around the silica surface which was composed of PEO chains directly anchored to the silica surface and those grafted to silica NPs by intermediate of >CH-O-Si- bonds. The colloidal stability of the particles during different steps of the grafting process was characterized by small-angle X-ray scattering (SAXS). We have found that the colloidal systems are stable whatever the achieved grafting density due to the strong repulsions between the NPs, with the strength of repulsion increasing with the molecular weight of the grafted MPEO chains.

19.
Macromol Rapid Commun ; 42(11): e2100047, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33719083

RESUMEN

NIR light-induced polymerization has attracted more and more attention in the photopolymerization field due to the possibility to use safer and more penetrating wavelengths, reducing the hazardousness. Here, a novel perspective for the free radical polymerization of acrylate-based monomers based on triplet-triplet annihilation upconversion (TTA-UC) is proposed, avoiding the introduction of heavy metals, usually required in the TTA processes. Thermal imaging experiments and Fourier transform infrared spectroscopy are respectively used to record the temperature during NIR irradiation and measure the reactive function conversion. The competition between the TTA-UC and the NIR photothermal activation is investigated to compare the relative efficiency of both NIR processes. In view of the results obtained by the different methods, the photothermal effect seems to get the upper hand over the photoactivation of the system.


Asunto(s)
Polimerizacion , Radicales Libres , Temperatura
20.
Macromol Rapid Commun ; 42(18): e2100181, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142733

RESUMEN

Herein, the synthesis of a novel nitroxide-mediated polymerization (NMP) initiator bearing a photolabile ortho-nitrobenzyl (oNB) group allowing surface-initiated NMP preparation of well-defined photoresponsive polystyrene grafted on silica nanoparticles is described. The photocleavable and photoresponsive properties of the prepared materials are demonstrated using small angle X-ray scattering (SAXS) characterization.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Óxidos de Nitrógeno , Polimerizacion , Poliestirenos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA