Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 179(3): 785-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26149746

RESUMEN

Floral traits have evolved to maximize reproductive success by attracting pollinators and facilitating pollination. Highly attractive floral traits may, however, also increase the degree of self-pollination, which could become detrimental for plant fitness through inbreeding depression. Floral nectar is a trait that is known to strongly mediate pollinator attraction and plant reproductive success, but the particular role of the nectar amino acid (AA) composition is poorly understood. Therefore, we experimentally manipulated the nectar AA composition and abundance of the Lepidoptera-pollinated orchid Gymnadenia conopsea through soil fertilization, and we quantified AA content and AA composition through high performance anion exchange chromatography with pulsed amperometric detection. Mixed models were then used to evaluate differences in pollinia removal, fruit set, seed set and degree of selfing between fertilized and control individuals. Selfing rates were estimated using microsatellite markers. We found that fertilized individuals had a significantly higher nectar AA content and an altered AA composition, whereas plant height, number of flowers, nectar volume and sugar concentration remained unchanged. Fertilized individuals also had significantly more pollinia removed and a higher fruit set, whereas control plants that did not receive the fertilization treatment had significantly fewer selfed seeds, and more viable seeds. Although we cannot exclude a role of changes in floral scent following the fertilization treatment, our results strongly suggest a relation among nectar AA composition, fruiting success and selfing rates. Our results also indicate potential consequences of nutrient pollution for plant reproductive success, through the induced changes in nectar AA composition.


Asunto(s)
Aminoácidos/metabolismo , Fertilización , Orchidaceae/fisiología , Néctar de las Plantas/metabolismo , Fertilizantes , Flores/genética , Frutas/crecimiento & desarrollo , Humanos , Nitrógeno/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Fósforo/metabolismo , Néctar de las Plantas/química , Polinización , Análisis de Componente Principal , Reproducción/genética , Semillas/genética
2.
Environ Manage ; 51(3): 801-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23180249

RESUMEN

The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.


Asunto(s)
Agricultura/métodos , Biodiversidad , Coffea , Árboles/clasificación , Conservación de los Recursos Naturales , Etiopía
3.
Evol Appl ; 6(2): 243-52, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23798974

RESUMEN

The montane rainforests of SW Ethiopia are the primary centre of diversity of Coffea arabica and the origin of all Arabica coffee cultivated worldwide. This wild gene pool is potentially threatened by forest fragmentation and degradation, and by introgressive hybridization with locally improved coffee varieties. We genotyped 703 coffee shrubs from unmanaged and managed coffee populations, using 24 microsatellite loci. Additionally, we genotyped 90 individuals representing 23 Ethiopian cultivars resistant to coffee berry disease (CBD). We determined population genetic diversity, genetic structure, and admixture of cultivar alleles in the in situ gene pool. We found strong genetic differentiation between managed and unmanaged coffee populations, but without significant differences in within-population genetic diversity. The widespread planting of coffee seedlings including CBD-resistant cultivars most likely offsets losses of genetic variation attributable to genetic drift and inbreeding. Mixing cultivars with original coffee genotypes, however, leaves ample opportunity for hybridization and replacement of the original coffee gene pool, which already shows signs of admixture. In situ conservation of the wild gene pool of C. arabica must therefore focus on limiting coffee production in the remaining wild populations, as intensification threatens the genetic integrity of the gene pool by exposing wild genotypes to cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA