Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Environ Manage ; 364: 121385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38875979

RESUMEN

Biosolids is a by-product of wastewater treatment that needs to be further processed. Traditional biosolids treatment and disposal technologies are inefficient under the current demanding standards. Thermochemical conversion technologies have been employed for biosolids management, with gasification being the most promising due to the production of syngas, a gaseous product that may be used for the production of energy or high-added-value substances through reforming reactions. Gasification is a complex thermochemical process; its performance and yield are strongly affected by the type of feedstock, but also by the system configuration and process conditions. Gasification usually takes place at temperatures between 700 and 1,200 °C, but it may also occur at lower temperatures (above 375 °C: supercritical water gasification) or at higher temperatures (above 3,000 °C: plasma gasification). The present review briefly presents the biosolids management practices, focusing on the gasification process and syngas treatment, while the state of the art in biosolids gasification is critically presented and discussed. A number of types of gasifiers (more frequently fluidized bed, but also fixed bed, rotary kiln, downdraft, etc.), gasifying agents, and operational conditions have been used for biosolids gasification. The key results of the study regarding biosolids gasification are: (i) the increase of temperature and equivalence ratio enhances the gasification performance, resulting in high syngas yield and quality, high cold gas efficiency, and low tar and char production; (ii) the calorific value of the obtained syngas tends to decrease with the increase of equivalence ratio; and (iii) the use of catalysts has been proven to substantially improve the gasification performance, compared to non-catalytic gasification. The proper selection of technical parameters determines the effectiveness of biosolids gasification, which is considered as a promising technology for the energy recovery from biosolids, so to upgrade wastewater treatment and improve environmental quality.


Asunto(s)
Gases , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
2.
J Environ Manage ; 347: 119129, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778073

RESUMEN

Buffing dust, generated from tannery industries, is a source of air pollution in Pakistan. Valorization of the waste into another useful material is important to deal with the environmental pollution, while reducing waste disposal costs in landfills. To demonstrate its technological strength, this work fabricates a thermal insulation material made of plaster of Paris and the buffing dust (from tanning waste) in the form of a composite with superior mechanical properties and low thermal conductivity. Buffing dust with concentrations ranging from 5 to 20% (w/w) were loaded in the composite. The samples synthesized were made slurry of plaster of Paris, buffing dust, and water at ambient temperature. The physico-mechanical properties of composite were analyzed. It was found that the composite had better thermal insulation properties than the panels of the plaster of Paris. Its thermal conductivity was reduced to 15% after adding buffing dust (20% w/w). All the materials had physico-chemical properties like tensile strength (0.02 MPa and 0.06 MPa), density (700-400 kg/m3), water absorption (5.2-8.6%) and thermal conductivity (0.17000-0.09218 W/m-K). Thermogravimetric analysis showed that the material was thermally stable at temperatures ranging from 145 to 177 °C, while FT-IR results revealed that the composite contained O-H, N-H, and CO functional groups. SEM analysis displayed that the composite's homogeneity was reduced with low voids due to buffing dust addition, while EDX analysis showed that the composite contained 23.62% of S, 26.76% of Ca, 49.2% of O and 0.42% of C. This implies that buffing dust could be recycled to manufacture heat insulation materials for construction sector to reduce air pollution, while minimizing energy consumption. By integrating the buffing dust from tanning waste and the plaster of Paris as a composite for construction sector, this work promotes the recycling of unused waste, while saving public funds. Instead of paying landfill fees and polluting soil, the waste may be recycled at lower cost, while reducing environmental damage.


Asunto(s)
Industria de la Construcción , Sulfato de Calcio , Polvo , Espectroscopía Infrarroja por Transformada de Fourier , Agua
3.
J Environ Manage ; 332: 117429, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773474

RESUMEN

Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.


Asunto(s)
Dióxido de Carbono , Carbono , Dióxido de Carbono/análisis , Carbón Orgánico/química , Suelo/química , Agricultura
4.
J Environ Manage ; 337: 117767, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965371

RESUMEN

An evaluation of the operative functioning data of 183 Wastewater Treatment Plants (WWTPs) in Apulia (Southeast of Italy) has been carried out aimed to assess their Green House Gases (GHGs) emissions and the level for which the use of anaerobic sludge treatment should be more convenient in terms of electricity consumption and of GHGs emissions. Out of the 183 studies WWTPs, 140 are practicing aerobic digestion of sludge, while the remaining 43 are practicing anaerobic digestion of sludge. WWTPs in Apulia are serving about 4,81 million PE (Population Equivalent), yielding approximately 600,000-ton equivalent CO2 per annum. The production of GHGs emissions has been estimated by evaluating the contribution of CO2 deriving from: a) electric energy consumption (fossil CO2), b) biogenic CO2, c) N2O and d) CH4 emissions. The present study investigates a number of technical measures for upgrading the existing WWTPs, so to reduce GHGs emissions through the amelioration of CH4 production and capture in the anaerobic step, and through reducing the production of biogenic N2O and CO2 emissions in the aerated basin. The methodology employees artificial intelligence-based control for upgrading the aerobic oxidation of the organic carbon and the nitrification-denitrification steps. As a result, GHGs emissions are expected to be reduced by approximately: 71% for CH4, 57% for N2O, 20% for biogenic CO2 and 15% for fossil derived CO2.


Asunto(s)
Gases de Efecto Invernadero , Purificación del Agua , Humanos , Dióxido de Carbono/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Inteligencia Artificial , Óxido Nitroso/análisis , Metano/análisis , Efecto Invernadero
5.
J Environ Manage ; 338: 117765, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965421

RESUMEN

Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.


Asunto(s)
Residuos Sólidos , Administración de Residuos , Administración de Residuos/métodos , Ambiente , Ciudades , Industrias , Reciclaje
6.
J Environ Manage ; 345: 118772, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597373

RESUMEN

This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.


Asunto(s)
Acetaminofén , Nanocompuestos , Bismuto/química , Aguas Residuales , Rayos Ultravioleta
7.
J Environ Manage ; 306: 114447, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033893

RESUMEN

The Virtual Special Issue entitled "Tackling Water Security" is mainly focused on water availability, water quality, management, governance, biotic or abiotic emerging contaminants and policy development in the Anthropocene. The issue is further dedicated to highlight the new opportunities and approaches to elevate the efficiency of water treatment and wastewater reuse. It has undergone an open call for papers and rigorous peer-review process, where each submission has been evaluated by the panel of experts. 43 articles have been selected from 85 submissions that represents the ongoing research and development activities. The message that emerged explicitly from nearly a hundred submissions to this special issue is that there is an urgent global need for cross-cutting approaches for the rational, quick, cost-effective and sustainable solutions for tackling water-security in the Anthropocene.


Asunto(s)
Cambio Climático , Purificación del Agua , Calidad del Agua , Abastecimiento de Agua
8.
J Environ Manage ; 317: 115479, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751276

RESUMEN

In this study a bamboo species, Moso Bamboo (MB) - Phyllostachys pubescens - has been selected for its heavy metal accumulation capacity and translocation potential to restore Cr-contaminated soil. Experiments have been conducted so to evaluate the capability of MB to remove Cr from soil, growing under Mediterranean conditions, irrigated with water containing 180 mgCr/L, at flow rate of 600 mm/year. The soil has been contaminated by the irrigation water. When the concentration of Cr in soil reached 300 mgCr/kg, Cr phytoextraction by MB from soil at the same irrigation rate of 600 mm/year with uncontaminated water has been evaluated. Cr removal from soil was approx. 42% after 6 weeks and 60.7% after 12 weeks, starting from a Cr content in soil of approximately 300 mg/kg. MB growing in Cr contaminated soil has shown Cr concentration per gram of dry biomass in aerial parts greater than the underground parts of the plants. After 12 weeks of cultivation, the quantity of Cr in roots and rhizome was measured as 1.79 mg/g, while in stems and leaves as 2.49 mg/g. Results shown a bioconcentration factor of 0.77, 0.65, 0.18, 0.08, after 6 weeks and 0.64, 0.98, 0.53, 0.26 after 12 weeks for roots, rhizomes, stems and leaves, respectively and a translocation factor equal to 0.23 and 0.11 after 6 weeks and 0.83 and 0.40 after 12 weeks, for stems and leaves, respectively.


Asunto(s)
Cromo , Contaminantes del Suelo , Biodegradación Ambiental , Poaceae , Suelo , Agua
9.
J Environ Manage ; 324: 116376, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208518

RESUMEN

With the increase of nitrogen (N) deposition, N input can affect soil C cycling since microbes may trigger a series of activities to balance the supply and demand of nutrients. However, as one of the largest C sinks on earth, the role of extra N addition in affecting peatland soil C and its potential mechanism remains unclear and debated. Therefore, this study chose the largest peatland in China (i.e., Zoige, mostly N-limited) to systematically explore the potential changes of soil C, microbes, and ecoenzymes caused by extra N input at the lab scale incubation. Three different types of soils were collected and incubated with different levels of NH4NO3 solution for 45 days. After incubation, N input generally increased soil organic C (SOC) but decreased dissolved organic carbon (DOC) in Zoige peatland soils. Moreover, CO2 and CH4 emissions were significantly increased after high N input (equal to 5 mg NH4NO3 g-1 dry soils). Through a series of analyses, it was observed that microbial communities and ecoenzyme activities mainly influenced the changes of different C components. Collectively, this study implied that the increasing N deposition might help C sequestration in N-limited peatland soils; simultaneously, the risk of increased CO2 and CH4 by N input in global warming should not be ignored.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Nitrógeno/análisis , Dióxido de Carbono/análisis , Materia Orgánica Disuelta
10.
J Environ Manage ; 301: 113882, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638040

RESUMEN

Due to its increasing demands for fossil fuels, Indonesia needs an alternative energy to diversify its energy supply. Landfill gas (LFG), which key component is methane (CH4), has become one of the most attractive options to sustain its continued economic development. This exploratory study seeks to demonstrate the added value of landfilled municipal solid waste (MSW) in generating sustainable energy, resulting from CH4 emissions in the Bantargebang landfill (Jakarta). The power generation capacity of a waste-to-energy (WTE) plant based on a mathematical modeling was investigated. This article critically evaluated the production of electricity and potential income from its sale in the market. The project's environmental impact assessment and its socio-economic and environmental benefits in terms of quantitative and qualitative aspects were discussed. It was found that the emitted CH4 from the landfill could be reduced by 25,000 Mt annually, while its electricity generation could reach one million kW â‹…h annually, savings on equivalent electricity charge worth US$ 112 million/year (based on US' 8/kW ⋅ h). An equivalent CO2 mitigation of 3.4 × 106 Mt/year was obtained. The income from its power sale were US$ 1.2 ×106 in the 1st year and 7.7 ×107US$ in the 15th year, respectively, based on the projected CH4 and power generation. The modeling study on the Bantargebang landfill using the LFG extraction data indicated that the LFG production ranged from 0.05 to 0.40 m3 per kg of the landfilled MSW. The LFG could generate electricity as low as US' 8 per kW ⋅ h. With respect to the implications of this study, the revenue not only defrays the cost of landfill's operations and maintenance (O&M), but also provides an incentive and means to further improve its design and operations. Overall, this work not only leads to a diversification of primary energy, but also improves environmental protection and the living standard of the people surrounding the plant.


Asunto(s)
Gases de Efecto Invernadero , Eliminación de Residuos , Electricidad , Humanos , Indonesia , Metano/análisis , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
11.
J Environ Manage ; 280: 111680, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33246752

RESUMEN

There is an increasing trend of developing various low-cost grafted natural amino polysaccharides for the biosorptive removal of noxious dye effluents like Malachite green (MG) and anionic Reactive Red-195 (RR-195) dyes from aqueous solution. Chemically cross-linked chitosan microsphere (CTS-HMP), a promising non-toxic biosorbent possessing high charge density and thermal stability was prepared by using hexametaphosphate as ionic cross-linker. Batch biosorption experiments were carried out under different temperatures (298, 308 and 318 K), pH (2.0-10.0), initial concentrations (25-250 mg L-1), adsorbent dosage (0.01-0.1 g) and contact times (0-180 min) to understand the optimum experimental conditions and simultaneously evaluate the adsorption isotherms and kinetics of CTS-HMP. Biosorption equilibrium was established in 120 and 60 min for MG and RR-195 removal process. The pseudo-equilibrium process was best described by the pseudo-second-order kinetic (R2 ≥ 0.98), Freundlich and Temkin isotherm model (R2 ≥ 0.90). The removal rate of MG and RR-195 gradually increased (69.40 and 148 mg g-1) at 250 mg L-1 of initial concentration till 100 and 50 min of contact period in a single contaminant system, though the removal efficiency of acid dye was ~2 times higher compared to basic dye under optimum conditions (p < 0.05; t-test). Thermodynamic parameters indicated exothermic (MG) and endothermic (RR-195) nature of spontaneous dye removal. The activation energy of sorption (Ea) was <50 kJ mol-1 which highlighted the importance of physical adsorption process. Therefore, the obtained results clearly validate the sustainable utilization of CTS-HMP as a promising functionalized chitosan microparticles/agent for removing dye effluents from the contaminated aqueous phase.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Colorantes , Concentración de Iones de Hidrógeno , Cinética , Fosfatos , Termodinámica , Calidad del Agua
12.
J Exp Biol ; 223(Pt 9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32291325

RESUMEN

Whereas upper ocean pelagic sharks are negatively buoyant and must swim continuously to generate lift from their fins, deep-sea sharks float or swim slowly buoyed up by large volumes of low-density oils in their livers. Investigation of the pressure, volume, temperature (PVT) relationships for liver oils of 10 species of deep-sea Chondrichthyes shows that the density difference between oil and seawater, Δρ, remains almost constant with pressure down to full ocean depth (11 km, 1100 bar), theoretically providing buoyancy far beyond the maximum depth of occurrence (3700 m) of sharks. However, Δρ does change significantly with temperature and we show that the combined effects of pressure and temperature can decrease buoyancy of oil by up to 10% between the surface and 3500 m depth across interfaces between warm southern and cold polar waters in the Rockall Trough in the NE Atlantic. This increases drag more than 10-fold compared with neutral buoyancy during horizontal slow swimming (0.1 m s-1), but the effect becomes negligible at high speeds. Chondrichthyes generally experience positive buoyancy change during ascent and negative buoyancy change during descent, but contrary effects can occur at interfaces between waters of different densities. During normal vertical migrations buoyancy changes are small, increasing slow-speed drag no more than 2- to 3-fold. Equations and tables of density, pressure and temperature are provided for squalene and liver oils of Chimaeriformes (Harriotta raleighana, Chimaera monstrosa, Hydrolagus affinis), Squaliformes (Centrophorus squamosus, Deania calcea, Centroscymnus coelolepis, Centroscyllium fabricii, Etmopterus spinax) and Carcharhiniformes (Apristurus laurussonii, Galeus murinus).


Asunto(s)
Tiburones , Animales , Peces , Hígado , Aceites , Agua de Mar
13.
J Environ Manage ; 275: 111204, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32854049

RESUMEN

Spent coffee ground (SCG) is an environmental nuisance material, but, if appropriately processed it can be converted into pellets, and thus, used as an energy source. The moisture content of the final product should be below 10%, to ensure safe storage, and elimination of microorganism growth (particularly moulds). The present study aims to identify the optimal drying process for removing moisture from SCG and to investigate changes to the composition of SCG due to drying, at temperatures around 75 °C, so that the dried SCG to qualify as renewable energy source. Three drying processes were employed for SCG drying (with initial moisture content of about 65%): oven drying, solar drying and open air sun drying, while SCG samples were placed in aluminium trays with thicknesses of 1.25, 2.5 and 4 cm. Based on the experimental results for SCG samples with thickness 2.5 cm, the open air sun drying process required 10 h to reach final moisture content of 37%, while solar drying achieved 10% moisture content in 10 h and oven drying achieved 7% moisture content in 6 h. The solar drying process proved as the most advantageous, due to low energy requirements and adequate quality of dried SCG. Also, experiments indicated that SCG storage at "normal room conditions" resulted to equilibrium moisture content in SCG of 8%, regardless of the initial moisture content. Furthermore, instrumental analyses of the SCG, revealed changes to its composition for a number of chemical groups, such as aldehydes, ketones, phytosterols, alkaloids, lactones, alcohols, phenols, pyrans and furans, among others. It was also identified that the SCG colour was affected due to the drying process.


Asunto(s)
Café , Desecación , Fenoles , Energía Renovable , Temperatura
14.
J Environ Manage ; 242: 258-265, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31048231

RESUMEN

In most municipal wastewater treatment plants, there is need for the removal of nitrogen, which usually takes place using the combined nitrification - denitrification process. Vigorous recirculation between the aeration and the anoxic tanks is enforced, to ensure complete denitrification. The scope of the present work was to investigate the possibility for nitrification-denitrification process in once-through systems (i.e.: without recirculation), without the need for the addition of extra carbon source (i.e. using the BOD in wastewater as carbon source), using encapsulated microorganisms. The primary aim was to increase the concentration of nitrifiers in the aerated reactor with parallel operation at hydraulic retention times (HRTs) below the doubling time of heterotrophic microorganisms, thus ensuring high ammonia oxidation rate and minimal reduction of organic carbon. The preserved organic carbon may be then used as carbon source at the downstream anoxic reactor. Coagulated and clarified wastewater from the effluent of the primary clarifier of a municipal wastewater treatment plant was used as feed to the system. The system comprised of two reactors (with 2 L working volume each) configured in series. The first one (aerated tank) contained encapsulated nitrifiers, while the second one (anoxic tank) contained encapsulated denitrifiers. The system operated at HRTs 8, 4 and 3 h (calculated individually for each reactor). The experiments indicated that at HRT equal to 8 h, almost all N-NH4+ was converted to N-NO3- in the aerated reactor, while the total nitrogen (TN) concentration was below 2 mg L-1 at the exit of the system. At HRT of 4 h a slight decrease in N-NH4+ removal was observed at the exit of the aerated tank (N-NH4+ concentration was measured 3.7 ± 0.1 mg L-1). At HRT equal to 4 h, N-NH4+ concentration did not change significantly during the downstream treatment in the anoxic tank, while N-NO3- concentration at the exit of the system was 1.4 ± 0.1 mg L-1. At the lowest HRT (3 h), N-NH4+ concentration was measured between 10 and 11 mg L-1, both, at the exit of the aeration tank and at the exit of the system; while, N-NO3- was measured 2.6 ± 0.2 mg L-1 at the exit of the system. On the other hand, BOD and TOC removal in the aeration tank decreased with the decrease of the HRT. BOD concentration at the exit of the anoxic tank measured 30.3 ± 2.2 and 19.4 ± 1.7 mg L-1 for HRTs 8 h or 4 h, respectively, while it was measured 51.6 ± 7.6 mg L-1 at HRT 3 h. On the other hand, TOC concentration at the outlet was measured 17.5 ± 1.2 and 13.2 ± 0.6 for HRTs 8 or 4 h, respectively, while it was measured 31.1 ± 5.6 mg L-1 at HRT equal to 3 h. Analysis of variance (ANOVA) showed significant variations of all measured parameters with the applied HRT, apart from N-NO3- concentration at the exit of the aerated tank. The latter was attributed to the complete oxidation oft N-NH4+ in the aerated tank at all HRTs. Based on the efficiency of the system, the volume of the aeration and denitrification tanks of a wastewater treatment plant using encapsulated microorganisms may be designed 16 times smaller, compared to conventional activated sludge plants, while the need for recirculation between the aerated and anoxic tanks may be completely eliminated.


Asunto(s)
Nitrificación , Aguas Residuales , Reactores Biológicos , Desnitrificación , Nitrógeno , Aguas del Alcantarillado
15.
J Environ Manage ; 216: 96-104, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28838769

RESUMEN

Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g-1VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification.


Asunto(s)
Biocombustibles , Residuos Sólidos , Anaerobiosis , Reactores Biológicos , Metano , Eliminación de Residuos
16.
J Environ Manage ; 203(Pt 2): 621-629, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316625

RESUMEN

Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 µm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m3, (or 0.087 kWh/m3, if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of inlet raw wastewater, has been calculated to 0.172 kWh/m3. It is thus obvious, that the proposed process can operate on an electric energy autonomous basis.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Filtración , Nitrógeno , Aguas del Alcantarillado
17.
J Environ Manage ; 203(Pt 2): 688-694, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26947317

RESUMEN

Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H2, 30.0% CO, 2.4% CH4 and 3.4% CO2, plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view.


Asunto(s)
Aguas Residuales , Electricidad , Gases , Calor , Temperatura , Purificación del Agua
18.
Environ Technol ; 35(17-20): 2140-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25145165

RESUMEN

Biosolids management is one of the most expensive and complicated processes in sanitation engineering. Anaerobic digestion (AD) is often employed for the stabilization ofbiomass and for energy production, as approximately 50% of the carbon entering the anaerobic digester is recovered as methane (CH4). Gasification has been used recently for the thermal reformation of biosolids to synthesis gas (syngas), which primarily consists ofcarbon monoxide (CO) and hydrogen (H2). In the present work, the net electrical energy production from biosolids has been calculated, for a typical activated sludge wastewater treatment plant, with an inlet flow rate of 75,708 m3/d (equal to 20 Mgd). The calculations suggest that the ultra-high-temperature gasification (UHTG) system can achieve a net electrical energy output of about 15.40 MJ/kg (dry biosolids), whereas the AD system can achieve values between 8.45 MJ/kg(dry biosolids). The latter values correspond to approximate net electrical energy power of 18.8 kW for UHTG, versus 9.9 kW for AD, for a wastewater treatment plant with capacity of 1000 m3/d; thus, the UHTG process yields approximately 190% of the energy that may be produced by the AD process.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Reactores Biológicos , Diseño de Equipo , Calor
19.
Environ Pollut ; 351: 124025, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670428

RESUMEN

Gathering information on plastic particles in composts and the processes they undergo is important in terms of potentially limiting their further entry into the environment, for example, in improving the fertilising properties of soils. Microplastics (MPs) were determined in composts produced from urban greenery. They are present in decreasing order: polyethylene terephthalate, polystyrene, polyethylene, and polypropylene. The determination of polymers and additives used to improve their properties was performed by pyrolysis and gas chromatography with mass spectrometric detection (Py-GC/MS). Additives and microplastics are most concentrated in composts in the 0.315-0.63 and 0.63-1.25 mm grain size class, together with the carbon contained in the compost dry matter. Additives form 0.11-0.13% of MPs in dry matter of compost. The average concentration of microplastics in the particle size class from 0.63 to 1.25 mm is 2434 ± 224 mg/kg; in the total sample of composts, it is 1368 ± 286 mg/kg of P-MPs. For composts with particle size <2.5 mm, a relationship between the C/N ratio and the plastic particle concentration was statistically significant. It documents a similar behaviour of lignocellulose and plastic particles during the degradation processes. A relationship between the concentration of polymer markers and additives in the compost dry matter and their concentrations in the leachate has been demonstrated. The leachability from compost is higher for additives than for chemical compounds originating from the decomposition of the main components of MPs. The suitability of the use of the compost for agricultural purposes was monitored by the germination index (GI) for watercress. The lowest value of the GI was determined in the particle size class from 0.63 to 1.25 mm. The leachability of polymer markers and additives alone cannot explain the low GI value in this grain size class. The GI value is also influenced by the leachability of chemical compounds characterised by the value of dissolved organic carbon (DOC) and water-leachable nitrogen (Nw). A statistically significant dependence between DOC/Nw and the germination index value was found.


Asunto(s)
Compostaje , Microplásticos , Tamaño de la Partícula , Plásticos , Suelo , Microplásticos/análisis , Suelo/química , Plásticos/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Cromatografía de Gases y Espectrometría de Masas , Ciudades
20.
Chemosphere ; 350: 141087, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160946

RESUMEN

This paper studies the influence of temperature and of rainfall intensity and the effect of such variations on the treatment efficiencies and on the electrical consumptions in seven medium-large size Wastewater Treatment Plants (WWTPs) in Apulia in South Italy (Bari, Barletta, Brindisi, Lecce, Foggia, Andria and Taranto). It has been observed, in the considered WWTPs, a slight but clear increase of the incoming flow due to the increase in rainfall intensity, which results to an increase of the energy consumption per incoming volume. The impact of the climate change to the incoming flow, during the last five years (2016-2020), has been assessed indicating that an increase in rainfall intensity results to an increase of the WWTPs energy consumptions per wastewater treated volume. More specifically, for a specific WWTP (Lecce) it was found that the electrical consumption increases from 0.36 kw/m3 to 0.51 kw/m3 when the rainfall intensity was increased from 0.8 mm/min to 2.9 mm/min. Some adaption measures have been considered to upgrade the existing WWTP so to mitigate the energy increase and to limit the global effects of climate change.


Asunto(s)
Cambio Climático , Purificación del Agua , Aguas Residuales , Italia , Electricidad , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA