Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551266

RESUMEN

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteoma/análisis , Proteómica/métodos , Azepinas/química , Azepinas/metabolismo , Azepinas/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Estradiol/farmacología , Humanos , Marcaje Isotópico , Células Jurkat , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Espectrometría de Masas en Tándem , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
2.
Nature ; 549(7670): 101-105, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813417

RESUMEN

Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.


Asunto(s)
Antígeno B7-H1/biosíntesis , Antígeno B7-H1/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Antígeno B7-H1/inmunología , Sistemas CRISPR-Cas , Línea Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Lisosomas/metabolismo , Ratones , Proteolisis , Proteoma/metabolismo , Especificidad por Sustrato , Linfocitos T/inmunología , Linfocitos T/metabolismo , Escape del Tumor/inmunología
3.
Nature ; 525(7570): 538-42, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26367796

RESUMEN

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/ß-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Asunto(s)
Benzodiazepinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Animales , Azepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes myc/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Terapia Molecular Dirigida , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Triazoles/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
4.
Br J Cancer ; 122(4): 465-472, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31831859

RESUMEN

As well as undergoing genetic evolution, cancer cells can alter their epigenetic state to adapt and resist treatment. This non-genetic evolution is emerging as a major component of cancer resistance. Only now are we beginning to acquire the necessary data and tools to establish some of the underlying principles and mechanisms that define when, why and how non-genetic resistance occurs. Preliminary studies suggest that it can exist in a number of forms, including drug persistence, unstable non-genetic resistance and, most intriguingly, stable non-genetic resistance. Exactly how they each arise remains unclear; however, epigenetic heterogeneity and plasticity appear to be important variables. In this review, we provide an overview of these different forms of non-genetic resistance, before exploring how epigenetic heterogeneity and plasticity influence their emergence. We highlight the distinction between non-genetic Darwinian selection and Lamarckian induction and discuss how each is capable of generating resistance. Finally, we discuss the potential interaction between genetic and non-genetic adaptation and propose the idea of 'the path of most resistance', which outlines the variables that dictate whether cancers adapt through genetic and/or epigenetic means. Through these discussions, we hope to provide a conceptual framework that focuses future studies, whose insights might help prevent or overcome non-genetic resistance.


Asunto(s)
Resistencia a Antineoplásicos , Epigénesis Genética , Neoplasias , Animales , Evolución Molecular , Humanos , Selección Genética
5.
EMBO Rep ; 18(10): 1775-1785, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28808112

RESUMEN

Perforin is a highly cytotoxic pore-forming protein essential for immune surveillance by cytotoxic lymphocytes. Prior to delivery to target cells by exocytosis, perforin is stored in acidic secretory granules where it remains functionally inert. However, how cytotoxic lymphocytes remain protected from their own perforin prior to its export to secretory granules, particularly in the Ca2+-rich endoplasmic reticulum, remains unknown. Here, we show that N-linked glycosylation of the perforin C-terminus at Asn549 within the endoplasmic reticulum inhibits oligomerisation of perforin monomers and thus protects the host cell from premature pore formation. Subsequent removal of this glycan occurs through proteolytic processing of the C-terminus within secretory granules and is imperative for perforin activation prior to secretion. Despite evolutionary conservation of the C-terminus, we found that processing is carried out by multiple proteases, which we attribute to the unstructured and exposed nature of the region. In sum, our studies reveal a post-translational regulatory mechanism essential for maintaining perforin in an inactive state until its secretion from the inhibitory acidic environment of the secretory granule.


Asunto(s)
Sinapsis Inmunológicas , Perforina/química , Perforina/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Humanos , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Glicoproteínas de Membrana , Ratones , Perforina/genética , Procesamiento Proteico-Postraduccional , Proteolisis
6.
Blood ; 125(12): 1890-900, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25645357

RESUMEN

Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA-mediated knockdown to survey the function of PRC2 accessory factors that were defined in embryonic stem cells (ESCs) by testing the competitive reconstitution capacity of transduced murine HSPCs. We find that, similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult mouse HSPCs. Furthermore, we demonstrate that depletion of JARID2 enhances the in vitro expansion and in vivo reconstitution capacity of human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Complejo Represivo Polycomb 2/metabolismo , Animales , Antígenos CD34/metabolismo , Linaje de la Célula , Perfilación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/citología , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Hígado/embriología , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Fenotipo , ARN Interferente Pequeño/metabolismo , Células Madre/citología
7.
Nat Genet ; 56(6): 1181-1192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769457

RESUMEN

Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to promoters. However, the relationships between TFs, promoters and their associated cofactors remain poorly understood. Here we combine GAL4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as ubiquitous or specific and discover transcriptional co-dependencies. Through a reductionistic, comparative approach, we demonstrate that TFs do not display discrete mechanisms of activation. Instead, each TF depends on a unique combination of cofactors, which influences distinct steps in transcription. By contrast, the influence of core promoters appears relatively discrete. Different promoter classes are constrained by either initiation or pause-release, which influences their dynamic range and compatibility with cofactors. Overall, our comparative cofactor screens characterize the interplay between TFs, cofactors and core promoters, identifying general principles by which they influence transcription.


Asunto(s)
Regiones Promotoras Genéticas , Factores de Transcripción , Activación Transcripcional , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas , Transcripción Genética , Regulación de la Expresión Génica
8.
Nat Struct Mol Biol ; 30(10): 1592-1606, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37679565

RESUMEN

Chromatin regulation involves the selective recruitment of chromatin factors to facilitate DNA repair, replication and transcription. Here we demonstrate the utility of coupling unbiased functional genomics with chromatin immunoprecipitation (CRISPR-ChIP) to identify the factors associated with active chromatin modifications in mammalian cells. Specifically, an integrated reporter containing a cis-regulatory element of interest and a single guide RNA provide a chromatinized template for a direct readout for regulators of histone modifications associated with actively transcribed genes such as H3K4me3 and H3K79me2. With CRISPR-ChIP, we identify all the nonredundant COMPASS complex members required for H3K4me3 and demonstrate that RNA polymerase II is dispensable for the maintenance of H3K4me3. As H3K79me2 has a putative oncogenic function in leukemia cells driven by MLL translocations, using CRISPR-ChIP we reveal a functional partitioning of H3K79 methylation into two distinct regulatory units: an oncogenic DOT1L complex directed by the MLL fusion protein in a Menin-dependent manner and a separate endogenous DOT1L complex, where catalytic activity is directed by MLLT10. Overall, CRISPR-ChIP provides a powerful tool for the unbiased interrogation of the mechanisms underpinning chromatin regulation.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Leucemia , Animales , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Factores de Transcripción/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Cromatina , Leucemia/genética , Inmunoprecipitación de Cromatina , Mamíferos/genética
9.
Nat Cell Biol ; 25(2): 258-272, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36635503

RESUMEN

Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.1 and Menin-KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin-KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.


Asunto(s)
Células Madre Pluripotentes , Factores de Transcripción , Proteínas del Grupo Polycomb/genética , Factores de Transcripción/genética , Genoma , Regiones Promotoras Genéticas
10.
Cell Rep ; 42(8): 113014, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37605534

RESUMEN

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Asunto(s)
Sistemas CRISPR-Cas , Inhibidores de Puntos de Control Inmunológico , Retroalimentación , Proteínas Supresoras de la Señalización de Citocinas/genética , Transducción de Señal
11.
Commun Biol ; 4(1): 878, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267311

RESUMEN

Angiogenesis underlies development, physiology and pathogenesis of cancer, eye and cardiovascular diseases. Inhibiting aberrant angiogenesis using anti-angiogenic therapy (AAT) has been successful in the clinical treatment of cancer and eye diseases. However, resistance to AAT inevitably occurs and its molecular basis remains poorly understood. Here, we uncover molecular modifiers of the blood endothelial cell (EC) response to a widely used AAT bevacizumab by performing a pooled genetic screen using three-dimensional microcarrier-based cell culture and CRISPR-Cas9. Functional inhibition of the epigenetic reader BET family of proteins BRD2/3/4 shows unexpected mitigating effects on EC survival and/or proliferation upon VEGFA blockade. Moreover, transcriptomic and pathway analyses reveal an interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs via the cell cycle regulator CDC25B phosphatase. Collectively, our findings provide insight into epigenetic regulation of the EC response to VEGFA blockade and may facilitate development of quality biomarkers and strategies for overcoming resistance to AAT.


Asunto(s)
Inhibidores de la Angiogénesis/genética , Bevacizumab/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Sangre , Células Endoteliales/efectos de los fármacos
12.
Nat Cancer ; 2(1): 34-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33997789

RESUMEN

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses, and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that is enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several Activator Protein-1 (AP-1) transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.


Asunto(s)
Neoplasias de la Mama , Factor de Transcripción AP-1 , Animales , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Genes cdc , Humanos , Ratones , Factor de Transcripción AP-1/genética
13.
Nat Commun ; 11(1): 3013, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541654

RESUMEN

B lymphoid development is initiated by the differentiation of hematopoietic stem cells into lineage committed progenitors, ultimately generating mature B cells. This highly regulated process generates clonal immunological diversity via recombination of immunoglobulin V, D and J gene segments. While several transcription factors that control B cell development and V(D)J recombination have been defined, how these processes are initiated and coordinated into a precise regulatory network remains poorly understood. Here, we show that the transcription factor ETS Related Gene (Erg) is essential for early B lymphoid differentiation. Erg initiates a transcriptional network involving the B cell lineage defining genes, Ebf1 and Pax5, which directly promotes expression of key genes involved in V(D)J recombination and formation of the B cell receptor. Complementation of Erg deficiency with a productively rearranged immunoglobulin gene rescued B lineage development, demonstrating that Erg is an essential and stage-specific regulator of the gene regulatory network controlling B lymphopoiesis.


Asunto(s)
Linfocitos B/metabolismo , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Linfopoyesis/genética , Proteínas Oncogénicas/genética , Transcripción Genética , Regulador Transcripcional ERG/genética , Animales , Linfocitos B/citología , Linaje de la Célula/genética , Células Cultivadas , Redes Reguladoras de Genes/genética , Células Madre Hematopoyéticas/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Oncogénicas/metabolismo , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/metabolismo , Recombinación V(D)J/genética
14.
Science ; 368(6489): 387-394, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32193360

RESUMEN

The two tandem bromodomains of the BET (bromodomain and extraterminal domain) proteins enable chromatin binding to facilitate transcription. Drugs that inhibit both bromodomains equally have shown efficacy in certain malignant and inflammatory conditions. To explore the individual functional contributions of the first (BD1) and second (BD2) bromodomains in biology and therapy, we developed selective BD1 and BD2 inhibitors. We found that steady-state gene expression primarily requires BD1, whereas the rapid increase of gene expression induced by inflammatory stimuli requires both BD1 and BD2 of all BET proteins. BD1 inhibitors phenocopied the effects of pan-BET inhibitors in cancer models, whereas BD2 inhibitors were predominantly effective in models of inflammatory and autoimmune disease. These insights into the differential requirement of BD1 and BD2 for the maintenance and induction of gene expression may guide future BET-targeted therapies.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Histona Acetiltransferasas/antagonistas & inhibidores , Factores Inmunológicos/farmacología , Terapia Molecular Dirigida , Factores de Transcripción/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Factores Inmunológicos/química , Factores Inmunológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Dominios Proteicos/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/genética
15.
Cancer Cell ; 36(4): 385-401.e8, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31564637

RESUMEN

Loss of MHC class I (MHC-I) antigen presentation in cancer cells can elicit immunotherapy resistance. A genome-wide CRISPR/Cas9 screen identified an evolutionarily conserved function of polycomb repressive complex 2 (PRC2) that mediates coordinated transcriptional silencing of the MHC-I antigen processing pathway (MHC-I APP), promoting evasion of T cell-mediated immunity. MHC-I APP gene promoters in MHC-I low cancers harbor bivalent activating H3K4me3 and repressive H3K27me3 histone modifications, silencing basal MHC-I expression and restricting cytokine-induced upregulation. Bivalent chromatin at MHC-I APP genes is a normal developmental process active in embryonic stem cells and maintained during neural progenitor differentiation. This physiological MHC-I silencing highlights a conserved mechanism by which cancers arising from these primitive tissues exploit PRC2 activity to enable immune evasion.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Regulación Neoplásica de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias/inmunología , Complejo Represivo Polycomb 2/metabolismo , Escape del Tumor/genética , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Metilación de ADN/inmunología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Resistencia a Antineoplásicos/genética , Represión Epigenética/efectos de los fármacos , Represión Epigenética/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Código de Histonas/efectos de los fármacos , Humanos , Ratones , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Linfocitos T/inmunología , Escape del Tumor/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nat Med ; 25(1): 119-129, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30455436

RESUMEN

Ibrutinib plus venetoclax is a highly effective combination in mantle cell lymphoma. However, strategies to enable the evaluation of therapeutic response are required. Our prospective analyses of patients within the AIM study revealed genomic profiles that clearly dichotomized responders and nonresponders. Mutations in ATM were present in most patients who achieved a complete response, while chromosome 9p21.1-p24.3 loss and/or mutations in components of the SWI-SNF chromatin-remodeling complex were present in all patients with primary resistance and two-thirds of patients with relapsed disease. Circulating tumor DNA analysis revealed that these alterations could be dynamically monitored, providing concurrent information on treatment response and tumor evolution. Functional modeling demonstrated that compromise of the SWI-SNF complex facilitated transcriptional upregulation of BCL2L1 (Bcl-xL) providing a selective advantage against ibrutinib plus venetoclax. Together these data highlight important insights into the molecular basis of therapeutic response and provide a model for real-time assessment of innovative targeted therapies.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Proteínas Cromosómicas no Histona/genética , Resistencia a Antineoplásicos/genética , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Mutación/genética , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Sulfonamidas/uso terapéutico , Factores de Transcripción/genética , Factor de Transcripción Activador 3/metabolismo , Adenina/análogos & derivados , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Tumoral Circulante/genética , Estudios de Cohortes , ADN Helicasas/metabolismo , Genoma Humano , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Piperidinas , Pronóstico , Factores de Transcripción/metabolismo , Resultado del Tratamiento , Proteína bcl-X/metabolismo
18.
Nat Commun ; 10(1): 2723, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222014

RESUMEN

Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Transactivadores/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Médula Ósea/patología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Epigénesis Genética/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética/efectos de los fármacos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Science ; 356(6345): 1397-1401, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28619718

RESUMEN

The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.


Asunto(s)
Benzodiazepinas/uso terapéutico , Química Clic , Sistemas de Liberación de Medicamentos , Epigenómica , Leucemia/tratamiento farmacológico , Animales , Benzodiazepinas/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Leucemia/patología , Ratones , Medicina de Precisión , Distribución Tisular , Factores de Transcripción/antagonistas & inhibidores
20.
Cancer Cell ; 30(1): 59-74, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27374225

RESUMEN

E proteins and their antagonists, the Id proteins, are transcriptional regulators important for normal hematopoiesis. We found that Id2 acts as a key regulator of leukemia stem cell (LSC) potential in MLL-rearranged acute myeloid leukemia (AML). Low endogenous Id2 expression is associated with LSC enrichment while Id2 overexpression impairs MLL-AF9-leukemia initiation and growth. Importantly, MLL-AF9 itself controls the E-protein pathway by suppressing Id2 while directly activating E2-2 expression, and E2-2 depletion phenocopies Id2 overexpression in MLL-AF9-AML cells. Remarkably, Id2 tumor-suppressive function is conserved in t(8;21) AML. Low expression of Id2 and its associated gene signature are associated with poor prognosis in MLL-rearranged and t(8;21) AML patients, identifying the Id2/E-protein axis as a promising new therapeutic target in AML.


Asunto(s)
Proteína 2 Inhibidora de la Diferenciación/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Translocación Genética , Animales , Proliferación Celular , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 8/genética , Regulación Leucémica de la Expresión Génica , Humanos , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Neoplasias Experimentales , Proteínas de Fusión Oncogénica/metabolismo , Pronóstico , Células Madre/citología , Células Madre/metabolismo , Análisis de Supervivencia , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA