Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Hum Mol Genet ; 31(4): 510-522, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34508586

RESUMEN

GNAO1 encephalopathy is a neurodevelopmental disorder with a spectrum of symptoms that include dystonic movements, seizures and developmental delay. While numerous GNAO1 mutations are associated with this disorder, the functional consequences of pathological variants are not completely understood. Here, we deployed the invertebrate C. elegans as a whole-animal behavioral model to study the functional effects of GNAO1 disorder-associated mutations. We tested several pathological GNAO1 mutations for effects on locomotor behaviors using a combination of CRISPR/Cas9 gene editing and transgenic overexpression in vivo. We report that all three mutations tested (G42R, G203R and R209C) result in strong loss of function defects when evaluated as homozygous CRISPR alleles. In addition, mutations produced dominant negative effects assessed using both heterozygous CRISPR alleles and transgenic overexpression. Experiments in mice confirmed dominant negative effects of GNAO1 G42R, which impaired numerous motor behaviors. Thus, GNAO1 pathological mutations result in conserved functional outcomes across animal models. Our study further establishes the molecular genetic basis of GNAO1 encephalopathy, and develops a CRISPR-based pipeline for functionally evaluating mutations associated with neurodevelopmental disorders.


Asunto(s)
Encefalopatías , Trastornos del Neurodesarrollo , Animales , Encefalopatías/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/genética , Ratones , Mutación , Trastornos del Neurodesarrollo/genética
2.
Brain ; 146(4): 1373-1387, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200388

RESUMEN

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Asunto(s)
Proteínas de Caenorhabditis elegans , Discapacidad Intelectual , Animales , Humanos , Cuerpo Calloso/patología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Discapacidad Intelectual/genética , Fenotipo , Ligasas/genética , Ubiquitinas/genética , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(11): 6178-6188, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123108

RESUMEN

The nervous system evaluates environmental cues and adjusts motor output to ensure navigation toward a preferred environment. The nematode Caenorhabditis elegans navigates in the thermal environment and migrates toward its cultivation temperature by moving up or down thermal gradients depending not only on absolute temperature but on relative difference between current and previously experienced cultivation temperature. Although previous studies showed that such thermal context-dependent opposing migration is mediated by bias in frequency and direction of reorientation behavior, the complete neural pathways-from sensory to motor neurons-and their circuit logics underlying the opposing behavioral bias remain elusive. By conducting comprehensive cell ablation, high-resolution behavioral analyses, and computational modeling, we identified multiple neural pathways regulating behavioral components important for thermotaxis, and demonstrate that distinct sets of neurons are required for opposing bias of even single behavioral components. Furthermore, our imaging analyses show that the context-dependent operation is evident in sensory neurons, very early in the neural pathway, and manifested by bidirectional responses of a first-layer interneuron AIB under different thermal contexts. Our results suggest that the contextual differences are encoded among sensory neurons and a first-layer interneuron, processed among different downstream neurons, and lead to the flexible execution of context-dependent behavior.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Interneuronas/fisiología , Navegación Espacial/fisiología , Termorreceptores/fisiología , Animales , Técnicas de Observación Conductual , Locomoción/fisiología , Vías Nerviosas/fisiología , Temperatura , Sensación Térmica/fisiología
4.
J Biol Chem ; 294(17): 6843-6856, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858176

RESUMEN

Inhibitory GABAergic transmission is required for proper circuit function in the nervous system. However, our understanding of molecular mechanisms that preferentially influence GABAergic transmission, particularly presynaptic mechanisms, remains limited. We previously reported that the ubiquitin ligase EEL-1 preferentially regulates GABAergic presynaptic transmission. To further explore how EEL-1 functions, here we performed affinity purification proteomics using Caenorhabditis elegans and identified the O-GlcNAc transferase OGT-1 as an EEL-1 binding protein. This observation was intriguing, as we know little about how OGT-1 affects neuron function. Using C. elegans biochemistry, we confirmed that the OGT-1/EEL-1 complex forms in neurons in vivo and showed that the human orthologs, OGT and HUWE1, also bind in cell culture. We observed that, like EEL-1, OGT-1 is expressed in GABAergic motor neurons, localizes to GABAergic presynaptic terminals, and functions cell-autonomously to regulate GABA neuron function. Results with catalytically inactive point mutants indicated that OGT-1 glycosyltransferase activity is dispensable for GABA neuron function. Consistent with OGT-1 and EEL-1 forming a complex, genetic results using automated, behavioral pharmacology assays showed that ogt-1 and eel-1 act in parallel to regulate GABA neuron function. These findings demonstrate that OGT-1 and EEL-1 form a conserved signaling complex and function together to affect GABA neuron function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuronas GABAérgicas/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aldicarb/farmacología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Cromatografía de Afinidad , Neuronas GABAérgicas/efectos de los fármacos , Terminales Presinápticos/metabolismo , Unión Proteica , Proteómica , Transducción de Señal , Transmisión Sináptica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/aislamiento & purificación
5.
PLoS Genet ; 13(12): e1007095, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29228003

RESUMEN

The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Neurogénesis , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Sinapsis/enzimología , Ubiquitina-Proteína Ligasas/metabolismo
6.
Learn Mem ; 23(10): 495-503, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27634141

RESUMEN

Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like Caenorhabditis elegans, can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral tracking and optogenetics for stimulation of the C. elegans polymodal nociceptor, ASH. Photoactivation of ASH with ChR2 elicited backward locomotion and repetitive stimulation altered aspects of the response in a manner consistent with habituation. Recording photocurrents in ASH, we observed no evidence for light adaptation of ChR2. Furthermore, we ruled out fatigue by demonstrating that sensory input from the touch cells could dishabituate the ASH avoidance circuit. Food and dopamine signaling slowed habituation downstream from ASH excitation via D1-like dopamine receptor, DOP-4. This assay allows for large-scale genetic and drug screens investigating mechanisms of nociception modulation.


Asunto(s)
Reacción de Prevención/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Habituación Psicofisiológica/fisiología , Nociceptores/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Conducta Alimentaria/fisiología , Procesamiento de Imagen Asistido por Computador , Locomoción/fisiología , Potenciales de la Membrana/fisiología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Actividad Motora/fisiología , Mutación , Nociceptores/citología , Optogenética , Técnicas de Placa-Clamp , Reconocimiento de Normas Patrones Automatizadas , Estimulación Luminosa , Receptores de Dopamina D2/genética , Sensación/fisiología
7.
Nat Methods ; 8(7): 592-8, 2011 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-21642964

RESUMEN

We designed a real-time computer vision system, the Multi-Worm Tracker (MWT), which can simultaneously quantify the behavior of dozens of Caenorhabditis elegans on a Petri plate at video rates. We examined three traditional behavioral paradigms using this system: spontaneous movement on food, where the behavior changes over tens of minutes; chemotaxis, where turning events must be detected accurately to determine strategy; and habituation of response to tap, where the response is stochastic and changes over time. In each case, manual analysis or automated single-worm tracking would be tedious and time-consuming, but the MWT system allowed rapid quantification of behavior with minimal human effort. Thus, this system will enable large-scale forward and reverse genetic screens for complex behaviors.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Animales , Caenorhabditis elegans/genética , Quimiotaxis , Movimiento , Procesos Estocásticos , Factores de Tiempo
8.
STAR Protoc ; 4(2): 102262, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37294631

RESUMEN

We present an optimized protocol for in vivo affinity purification proteomics and biochemistry using the model organism C. elegans. We describe steps for target tagging, large-scale culture, affinity purification using a cryomill, mass spectrometry and validation of candidate binding proteins. Our approach has proven successful for identifying protein-protein interactions and signaling networks with verified functional relevance. Our protocol is also suitable for biochemical evaluation of protein-protein interactions in vivo. For complete details on the use and execution of this protocol, please refer to Crawley et al.,1 Giles et al.,2 and Desbois et al.3.

9.
Nat Neurosci ; 25(9): 1179-1190, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982154

RESUMEN

Repeated exposure to opioids causes tolerance, which limits their analgesic utility and contributes to overdose and abuse liability. However, the molecular mechanisms underpinning tolerance are not well understood. Here, we used a forward genetic screen in Caenorhabditis elegans for unbiased identification of genes regulating opioid tolerance which revealed a role for PTR-25/Ptchd1. We found that PTR-25/Ptchd1 controls µ-opioid receptor trafficking and that these effects were mediated by the ability of PTR-25/Ptchd1 to control membrane cholesterol content. Electrophysiological studies showed that loss of Ptchd1 in mice reduced opioid-induced desensitization of neurons in several brain regions and the peripheral nervous system. Mice and C. elegans lacking Ptchd1/PTR-25 display similarly augmented responses to opioids. Ptchd1 knockout mice fail to develop analgesic tolerance and have greatly diminished somatic withdrawal. Thus, we propose that Ptchd1 plays an evolutionarily conserved role in protecting the µ-opioid receptor against overstimulation.


Asunto(s)
Analgésicos Opioides , Morfina , Analgésicos Opioides/farmacología , Animales , Caenorhabditis elegans , Colesterol , Tolerancia a Medicamentos , Proteínas de la Membrana , Ratones , Ratones Noqueados , Morfina/farmacología , Receptores Opioides mu/genética
10.
Neuron ; 55(4): 662-76, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17698017

RESUMEN

Dopamine has been implicated in the modulation of diverse forms of behavioral plasticity, including appetitive learning and addiction. An important challenge is to understand how dopamine's effects at the cellular level alter the properties of neural circuits to modify behavior. In the nematode C. elegans, dopamine modulates habituation of an escape reflex triggered by body touch. In the absence of food, animals habituate more rapidly than in the presence of food; this contextual information about food availability is provided by dopaminergic mechanosensory neurons that sense the presence of bacteria. We find that dopamine alters habituation kinetics by selectively modulating the touch responses of the anterior-body mechanoreceptors; this modulation involves a D1-like dopamine receptor, a Gq/PLC-beta signaling pathway, and calcium release within the touch neurons. Interestingly, the body touch mechanoreceptors can themselves excite the dopamine neurons, forming a positive feedback loop capable of integrating context and experience to modulate mechanosensory attention.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Dopamina/metabolismo , Plasticidad Neuronal , Neuronas Aferentes/fisiología , Tacto , Animales , Animales Modificados Genéticamente , Conducta Animal , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Reacción de Fuga/fisiología , Habituación Psicofisiológica/fisiología , Modelos Biológicos , Mutación/fisiología , Estimulación Física/métodos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transducción de Señal/fisiología , Estadísticas no Paramétricas , Factores de Tiempo
11.
Neural Dev ; 15(1): 6, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32336296

RESUMEN

Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Sistema Nervioso , Células-Madre Neurales/fisiología , Trastornos del Neurodesarrollo/genética , Proteínas Supresoras de Tumor/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Regulación de la Expresión Génica/genética , Humanos , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Células-Madre Neurales/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Neurobiol Learn Mem ; 92(2): 139-46, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18771741

RESUMEN

This review surveys the literature that investigates the behavioral characterization and cellular and molecular mechanisms of habituation using the model organism Caenorhabditis elegans. In 1990, C. elegans was first observed to show habituation to a non-localized mechanical tap. The parameters that govern this behavioral plasticity in C. elegans were subsequently characterized, which lead to the important hypothesis that habituation is mediated by multiple mechanisms. Many tools are available to C. elegans researchers that allow for relatively easy genetic manipulation. This has lead to a number of recent genetic studies that have begun to identify key genes and molecules that play a role in the mechanisms of habituation. Some of these genes include a vesicular glutamate transporter, a glutamate receptor subunit, a dopamine receptor and downstream intracellular signaling molecules, such as G proteins and kinases. Some of these genes only affect certain parameters of habituation, but not others supporting the hypothesis that multiple mechanisms mediate habituation. The field of research has also led to the dissection of different phases of memory (short-term vs. long-term memory for habituation), which are triggered by different training paradigms. The differences in mechanism between these various forms of memory are also beginning to be revealed.


Asunto(s)
Conducta Animal/fisiología , Habituación Psicofisiológica/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Memoria a Corto Plazo/fisiología , Recuerdo Mental/fisiología , Modelos Animales , Neuronas/fisiología , Fosfolipasa C beta/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular de Glutamato
13.
Elife ; 82019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30652969

RESUMEN

Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Terminales Presinápticos/fisiología , Transducción de Señal , Tubulina (Proteína)/metabolismo , Animales , Aprendizaje , Sistema de Señalización de MAP Quinasas , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo
14.
Nat Commun ; 10(1): 5017, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676756

RESUMEN

Autophagy is an intracellular catabolic process prominent in starvation, aging and disease. Neuronal autophagy is particularly important, as it affects the development and function of the nervous system, and is heavily implicated in neurodegenerative disease. Nonetheless, how autophagy is regulated in neurons remains poorly understood. Using an unbiased proteomics approach, we demonstrate that the primary initiator of autophagy, the UNC-51/ULK kinase, is negatively regulated by the ubiquitin ligase RPM-1. RPM-1 ubiquitin ligase activity restricts UNC-51 and autophagosome formation within specific axonal compartments, and exerts effects broadly across the nervous system. By restraining UNC-51 activity, RPM-1 inhibits autophagosome formation to affect axon termination, synapse maintenance and behavioral habituation. These results demonstrate how UNC-51 and autophagy are regulated subcellularly in axons, and unveils a mechanism for restricting initiation of autophagy across the nervous system. Our findings have important implications beyond nervous system development, given growing links between altered autophagy regulation and neurodegenerative diseases.


Asunto(s)
Autofagia/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Axones/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Enfermedades Neurodegenerativas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Sinapsis/genética , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Sci Rep ; 9(1): 10104, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300701

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, for which there is no effective treatment. Previously, we generated a Caenorhabditis elegans model of ALS, in which the expression of dnc-1, the homologous gene of human dynactin-1, is knocked down (KD) specifically in motor neurons. This dnc-1 KD model showed progressive motor defects together with axonal and neuronal degeneration, as observed in ALS patients. In the present study, we established a behavior-based, automated, and quantitative drug screening system using this dnc-1 KD model together with Multi-Worm Tracker (MWT), and tested whether 38 candidate neuroprotective compounds could improve the mobility of the dnc-1 KD animals. We found that 12 compounds, including riluzole, which is an approved medication for ALS patients, ameliorated the phenotype of the dnc-1 KD animals. Nifedipine, a calcium channel blocker, most robustly ameliorated the motor deficits as well as axonal degeneration of dnc-1 KD animals. Nifedipine also ameliorated the motor defects of other motor neuronal degeneration models of C. elegans, including dnc-1 mutants and human TAR DNA-binding protein of 43 kDa overexpressing worms. Our results indicate that dnc-1 KD in C. elegans is a useful model for the screening of drugs against motor neuron degeneration, and that MWT is a powerful tool for the behavior-based screening of drugs.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Fármacos Neuroprotectores/farmacología , Nifedipino/farmacología , Riluzol/farmacología , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Complejo Dinactina/genética , Humanos , Neuronas Motoras/patología
16.
Science ; 365(6459): 1267-1273, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31416932

RESUMEN

Opioids target the µ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/genética , Proteínas del Tejido Nervioso/genética , Receptores Nucleares Huérfanos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/genética , Analgesia , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Mapeo Cromosómico , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Morfina/farmacología , Neuronas/efectos de los fármacos , Transducción de Señal
17.
Psychopharmacology (Berl) ; 190(1): 65-72, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17047929

RESUMEN

RATIONALE: The nucleus accumbens (NAc) plays a central role in dopamine-produced reward-related learning. In previous studies, the cyclic adenosine monophosphate-dependent protein kinase (PKA) inhibitor Rp-Cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (Rp-cAMPS) blocked the acquisition but not expression of NAc reward-related learning for natural rewards and the acquisition of psychostimulant drug conditioning. OBJECTIVES: The current study assessed the role of PKA in the expression of NAc amphetamine (amph)-produced conditioning using conditioned activity (CA). MATERIALS AND METHODS: After 5 days of habituation, a test environment was paired with bilateral NAc injections of amph (0.0 or 25.0 micro g) and the PKA inhibitor Rp-cAMPS (0.0, 5.0, 10.0, or 20.0 micro g) over three 60-min conditioning sessions separated by 48 h. To test for effects on expression, some groups received vehicle or amph alone before conditioning sessions and were injected with 0.0, 0.25, 5.0, or 20.0 mug of Rp-cAMPS before the single 60-min test session. RESULTS: Amph produced acute increases in locomotion and robust CA. Rp-cAMPS impaired the acquisition of amph-produced CA but not its expression; in fact, it enhanced expression. CONCLUSIONS: Results show that PKA inhibition blocks the acquisition but not the expression of amph-produced conditioning.


Asunto(s)
Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Operante/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/análogos & derivados , Recuerdo Mental/efectos de los fármacos , Motivación , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Tionucleótidos/farmacología , Animales , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Mapeo Encefálico , AMP Cíclico/farmacología , Dominancia Cerebral/efectos de los fármacos , Dominancia Cerebral/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Recuerdo Mental/fisiología , Actividad Motora/fisiología , Núcleo Accumbens/fisiología , Ratas , Ratas Wistar
18.
NPJ Sci Learn ; 2: 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30631455

RESUMEN

Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.

19.
Cell Rep ; 19(4): 822-835, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445732

RESUMEN

Genetic changes in the HECT ubiquitin ligase HUWE1 are associated with intellectual disability, but it remains unknown whether HUWE1 functions in post-mitotic neurons to affect circuit function. Using genetics, pharmacology, and electrophysiology, we show that EEL-1, the HUWE1 ortholog in C. elegans, preferentially regulates GABAergic presynaptic transmission. Decreasing or increasing EEL-1 function alters GABAergic transmission and the excitatory/inhibitory (E/I) balance in the worm motor circuit, which leads to impaired locomotion and increased sensitivity to electroshock. Furthermore, multiple mutations associated with intellectual disability impair EEL-1 function. Although synaptic transmission defects did not result from abnormal synapse formation, sensitizing genetic backgrounds revealed that EEL-1 functions in the same pathway as the RING family ubiquitin ligase RPM-1 to regulate synapse formation and axon termination. These findings from a simple model circuit provide insight into the molecular mechanisms required to obtain E/I balance and could have implications for the link between HUWE1 and intellectual disability.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas GABAérgicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aldicarb/toxicidad , Animales , Animales Modificados Genéticamente/metabolismo , Axones/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Electrochoque , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipersensibilidad/etiología , Locomoción/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Terminales Presinápticos/metabolismo , Interferencia de ARN , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética
20.
G3 (Bethesda) ; 5(12): 2745-57, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26464359

RESUMEN

The PAM/Highwire/RPM-1 (PHR) proteins are signaling hubs that function as important regulators of neural development. Loss of function in Caenorhabditis elegans rpm-1 and Drosophila Highwire results in failed axon termination, inappropriate axon targeting, and abnormal synapse formation. Despite broad expression in the nervous system and relatively dramatic defects in synapse formation and axon development, very mild abnormalities in behavior have been found in animals lacking PHR protein function. Therefore, we hypothesized that large defects in behavior might only be detected in scenarios in which evoked, prolonged circuit function is required, or in which behavioral plasticity occurs. Using quantitative approaches in C. elegans, we found that rpm-1 loss-of-function mutants have relatively mild abnormalities in exploratory locomotion, but have large defects in evoked responses to harsh touch and learning associated with tap habituation. We explored the nature of the severe habituation defects in rpm-1 mutants further. To address what part of the habituation circuit was impaired in rpm-1 mutants, we performed rescue analysis with promoters for different neurons. Our findings indicate that RPM-1 function in the mechanosensory neurons affects habituation. Transgenic expression of RPM-1 in adult animals failed to rescue habituation defects, consistent with developmental defects in rpm-1 mutants resulting in impaired habituation. Genetic analysis showed that other regulators of neuronal development that function in the rpm-1 pathway (including glo-4, fsn-1, and dlk-1) also affected habituation. Overall, our findings suggest that developmental defects in rpm-1 mutants manifest most prominently in behaviors that require protracted or plastic circuit function, such as learning.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Habituación Psicofisiológica/genética , Locomoción/genética , Mecanotransducción Celular , Mutación , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA