Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circulation ; 131(7): 656-68, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25520375

RESUMEN

BACKGROUND: A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. METHODS AND RESULTS: This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. CONCLUSIONS: DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug.


Asunto(s)
Fosfatasa 3 de Especificidad Dual/antagonistas & inhibidores , Fosfatasa 3 de Especificidad Dual/deficiencia , Activación Plaquetaria/fisiología , Embolia Pulmonar/enzimología , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria/efectos de los fármacos , Embolia Pulmonar/sangre , Trombosis/sangre , Trombosis/enzimología
2.
J Biol Chem ; 288(19): 13325-36, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23519467

RESUMEN

BACKGROUND: Inactivation of integrin αIIbß3 reverses platelet aggregate formation upon coagulation. RESULTS AND CONCLUSION: Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbß3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. SIGNIFICANCE: These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbß3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbß3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the ß3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbß3 inactivation. Integrin αIIbß3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbß3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbß3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbß3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.


Asunto(s)
Plaquetas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Animales , Anoctaminas , Plaquetas/efectos de los fármacos , Plaquetas/fisiología , Antígenos CD36/metabolismo , Señalización del Calcio , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Membrana Celular/metabolismo , Venenos de Crotálidos/farmacología , Dipéptidos/farmacología , Humanos , Lectinas Tipo C , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Agregación Plaquetaria , Estructura Cuaternaria de Proteína , Proteolisis , Talina/metabolismo , Trombina/farmacología , Trombina/fisiología , Familia-src Quinasas/metabolismo
3.
Blood ; 118(2): 416-24, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21527521

RESUMEN

Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria/genética , Proteína Quinasa C/fisiología , Proteínas Quinasas/fisiología , Trombosis/genética , Animales , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Indoles/farmacología , Masculino , Maleimidas/farmacología , Ratones , Ratones Noqueados , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética , Agregación Plaquetaria/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa D2 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/metabolismo , Transducción de Señal/efectos de los fármacos , Trombosis/metabolismo
4.
Cell Mol Life Sci ; 69(20): 3481-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22669259

RESUMEN

The fibrin(ogen) receptor, integrin α(IIb)ß(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)ß(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)ß(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)ß(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)ß(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)ß(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)ß(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)ß(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.


Asunto(s)
Plaquetas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Trombastenia/sangre , Trombina/metabolismo , Tromboplastina/farmacología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/efectos de los fármacos , Western Blotting , Fibrinógeno/metabolismo , Citometría de Flujo , Humanos , Fosfoserina/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal , Quinasa Syk
5.
J Clin Invest ; 119(2): 399-407, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19147982

RESUMEN

Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.


Asunto(s)
Plaquetas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteína Quinasa C-alfa/fisiología , Trombosis/etiología , Adenosina Difosfato/farmacología , Animales , Plaquetas/ultraestructura , Integrinas/fisiología , Ratones , Agregación Plaquetaria/efectos de los fármacos , Proteína Quinasa C/fisiología , Proteína Quinasa C beta , Transducción de Señal
6.
J Biol Chem ; 285(30): 23410-9, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20479008

RESUMEN

Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.


Asunto(s)
Plaquetas/enzimología , Colágeno/farmacología , Proteína Quinasa C/metabolismo , Trombosis/sangre , Trombosis/enzimología , Animales , Anticoagulantes/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/fisiología , Señalización del Calcio/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/deficiencia , Isoenzimas/metabolismo , Ratones , Activación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/deficiencia , Trombosis/inducido químicamente , Trombosis/fisiopatología
7.
J Biol Chem ; 285(31): 23629-38, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20519511

RESUMEN

In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1(-/-) and Orai1(-/-) platelets had greatly impaired glycoprotein (GP) VI-dependent Ca(2+) signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2(-/-) platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca(2+) signals of Stim1(-/-) and Orai1(-/-) platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1(-/-) and Orai1(-/-) platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca(2+) entry, inhibited Ca(2+) and procoagulant responses even in Stim1(-/-) and Orai1(-/-) platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca(2+) entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca(2+) entry and PS exposure, only one relying on STIM1-Orai1 interaction.


Asunto(s)
Canales de Calcio/metabolismo , Coagulantes/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombina/metabolismo , Trombosis/metabolismo , Animales , Plaquetas/metabolismo , Calcio/química , Calcio/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Proteína ORAI1 , Molécula de Interacción Estromal 1
8.
J Biol Chem ; 284(49): 33750-62, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19815551

RESUMEN

Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.


Asunto(s)
Plaquetas/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/patología , Animales , Calcio/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Activación Plaquetaria , Agregación Plaquetaria , Isoformas de Proteínas , Transducción de Señal , Trombosis/metabolismo
9.
PLoS One ; 3(9): e3277, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18815612

RESUMEN

BACKGROUND: PKCtheta is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCtheta(-/-) T cells exhibit reduced activation and PKCtheta(-/-) mice are resistant to autoimmune disease, making PKCtheta an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCtheta positively regulates outside-in signalling through integrin alpha(IIb)beta(3) in platelets, the role of PKCtheta in GPVI-dependent signalling and functional activation of platelets has not been assessed. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we assessed static adhesion, cell spreading, granule secretion, integrin alpha(IIb)beta(3) activation and platelet aggregation in washed mouse platelets lacking PKCtheta. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCtheta(-/-) platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCtheta positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCtheta(-/-) platelets also exhibited markedly enhanced GPVI-dependent alpha-granule secretion, although dense granule secretion was unaffected, suggesting that PKCtheta differentially regulates these two granules. Inside-out regulation of alpha(IIb)beta(3) activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s(-1)) was enhanced. CONCLUSIONS/SIGNIFICANCE: These data suggest that PKCtheta is an important negative regulator of thrombus formation on collagen, potentially mediated by alpha-granule secretion and alpha(IIb)beta(3) activation. PKCtheta therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCtheta inhibitors.


Asunto(s)
Plaquetas/metabolismo , Regulación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/fisiología , Proteína Quinasa C/genética , Proteína Quinasa C/fisiología , Trombosis/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Colágeno/química , Sistema Inmunológico , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Activación Plaquetaria , Adhesividad Plaquetaria , Agregación Plaquetaria , Isoformas de Proteínas , Proteína Quinasa C-theta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA