Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Anim Ecol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946701

RESUMEN

Among migratory vertebrates, high levels of fidelity to non-breeding sites during adulthood are common. If occupied sites vary in quality, strong site fidelity can have profound consequences for individual fitness and population demography. Given the prevalence of adult site fidelity, the regions of the non-breeding range to which juveniles first migrate, and the scale of any subsequent movements, are likely to be pivotal in shaping distributions and demographic processes across population ranges. However, inherent difficulties in tracking migratory individuals through early life mean that opportunities to quantify juvenile settlement and movements across non-breeding ranges, and the mechanisms involved, are extremely rare. Through long-term, range-wide resightings of hundreds of colour-marked individuals from their first migration to adulthood and the application of state-space models, we quantify levels of juvenile and adult regional-scale movements and distances at different life stages across the whole non-breeding distribution range in a migratory shorebird, the Black-tailed Godwit (Limosa limosa islandica). We show that the probability of individuals changing non-breeding regions (seven historical wintering regions spanning the Western Europe range) at all ages is very low (mean movement probability = 10.9% from first to subsequent winter, and 8.3% from first adult winter to later winters). Movement between regions was also low between autumn and winter of the same year for both juveniles (mean movement probability = 17.0%) and adults (10.4%). The great majority of non-breeding movements from the first autumn to adulthood were within regions and less than 100 km. The scarcity of regional-scale non-breeding movements from the first autumn to adulthood means that the factors influencing where juveniles settle will be key determinants of non-breeding distributions and of the rate and direction of changes in distributions.

2.
J Anim Ecol ; 91(7): 1416-1430, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35385132

RESUMEN

Changes in phenology and distribution are being widely reported for many migratory species in response to shifting environmental conditions. Understanding these changes and the situations in which they occur can be aided by understanding consistent individual differences in phenology and distribution and the situations in which consistency varies in strength or detectability. Studies tracking the same individuals over consecutive years are increasingly reporting migratory timings to be a repeatable trait, suggesting that flexible individual responses to environmental conditions may contribute little to population-level changes in phenology and distribution. However, how this varies across species and sexes, across the annual cycle and in relation to study (tracking method, study design) and/or ecosystem characteristics is not yet clear. Here, we take advantage of the growing number of publications in movement ecology to perform a phylogenetic multilevel meta-analysis of repeatability estimates for avian migratory timings to investigate these questions. Of 2,433 reviewed studies, 54 contained suitable information for meta-analysis, resulting in 177 effect sizes from 47 species. Individual repeatability of avian migratory timings averaged 0.414 (95% confidence interval: 0.3-0.5) across landbirds, waterbirds and seabirds, suggesting consistent individual differences in migratory timings is a common feature of migratory systems. Timing of departure from the non-breeding grounds was more repeatable than timings of arrival at or departure from breeding grounds, suggesting that conditions encountered on migratory journeys and outcome of breeding attempts can influence individual variation. Population-level shifts in phenology could arise through individual timings changing with environmental conditions and/or through shifts in the numbers of individuals with different timings. Our findings suggest that, in addition to identifying the conditions associated with individual variation in phenology, exploring the causes of between-individual variation will be key in predicting future rates and directions of changes in migratory timings. We therefore encourage researchers to report the within- and between- individual variance components underpinning the reported repeatability estimates to aid interpretation of migration behaviour. In addition, the lack of studies in the tropics means that levels of repeatability in less strongly seasonal environments are not yet clear.


Asunto(s)
Migración Animal , Ecosistema , Animales , Aves , Filogenia , Estaciones del Año
3.
Proc Biol Sci ; 288(1946): 20202955, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653129

RESUMEN

Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.


Asunto(s)
Migración Animal , Aves , Animales , Conservación de los Recursos Naturales , Europa (Continente) , Dinámica Poblacional
4.
Ecol Lett ; 19(3): 308-17, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807694

RESUMEN

Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within-population variability in migratory movements and destinations, here termed 'migratory diversity', might be more resilient to environmental change. To test this, we related map-based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non-breeding ranges relative to breeding, a characteristic we term 'migratory dispersion', were less likely to be declining than those with more restricted non-breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non-breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe-wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.


Asunto(s)
Distribución Animal , Migración Animal , Aves/fisiología , Animales , Cambio Climático , Europa (Continente) , Dinámica Poblacional , Estaciones del Año
5.
Proc Biol Sci ; 283(1842)2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27807267

RESUMEN

Across Europe, rapid population declines are ongoing in many Afro-Palaearctic migratory bird species, but the development of appropriate conservation actions across such large migratory ranges is severely constrained by lack of understanding of the demographic drivers of these declines. By constructing regional integrated population models (IPMs) for one of the suite of migratory species that is declining in the southeast of Britain but increasing in the northwest, we show that, while annual population growth rates in both regions vary with adult survival, the divergent regional trajectories are primarily a consequence of differences in productivity. Between 1994 and 2012, annual survival and productivity rates ranged over similar levels in both regions, but high productivity rates were rarer in the declining southeast population and never coincided with high survival rates. By contrast, population growth in the northwest was fuelled by several years in which higher productivity coincided with high survival rates. Simulated population trajectories suggest that realistic improvements in productivity could have reversed the decline (i.e. recovery of the population index to more than or equal to 1) in the southeast. Consequently, actions to improve productivity on European breeding grounds are likely to be a more fruitful and achievable means of reversing migrant declines than actions to improve survival on breeding, passage or sub-Saharan wintering grounds.


Asunto(s)
Migración Animal , Aves , África del Sur del Sahara , Animales , Conservación de los Recursos Naturales , Dinámica Poblacional , Estaciones del Año , Reino Unido
6.
J Anim Ecol ; 85(5): 1298-306, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27390034

RESUMEN

Male-biased sex ratios occur in many bird species, particularly in those with small or declining populations, but the causes of these skews and their consequences for local population demography are rarely known. Within-species variation in sex ratios can help to identify the demographic and behavioural processes associated with such biases. Small populations may be more likely to have skewed sex ratios if sex differences in survival, recruitment or dispersal vary with local abundance. Analyses of species with highly variable local abundances can help to identify these mechanisms and the implications for spatial variation in demography. Many migratory bird species are currently undergoing rapid and severe declines in abundance in parts of their breeding ranges and thus have sufficient spatial variation in abundance to explore the extent of sex ratio biases, their causes and implications. Using national-scale bird ringing data for one such species (willow warbler, Phylloscopus trochilus), we show that sex ratios vary greatly across Britain and that male-biased sites are more frequent in areas of low abundance, which are now widespread across much of south and east England. These sex ratio biases are sufficient to impact local productivity, as the relative number of juveniles caught at survey sites declines significantly with increasing sex ratio skew. Sex differences in survival could influence this sex ratio variation, but we find little evidence for sex differences in survival increasing with sex ratio skew. In addition, sex ratios have become male-biased over the last two decades, but there are no such trends in adult survival rates for males or females. This suggests that lower female recruitment into low abundance sites is contributing to these skews. These findings suggest that male-biased sex ratios in small and declining populations can arise through local-scale sex differences in survival and dispersal, with females recruiting disproportionately into larger populations. Given the high level of spatial variation in population declines and abundance of many migratory bird species across Europe at present, male-biased small populations may be increasingly common. As singing males are the primary records used in surveys of these species, and as unpaired males often sing throughout the breeding season, local sex ratio biases could also be masking the true extent of these population declines.


Asunto(s)
Longevidad , Reproducción , Razón de Masculinidad , Pájaros Cantores/fisiología , Migración Animal , Animales , Femenino , Geografía , Masculino , Densidad de Población , Estaciones del Año
7.
J Anim Ecol ; 84(5): 1141-3, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26376431

RESUMEN

The way that animal populations respond to changing weather conditions is a major focus of current research, fuelled by the need to predict the future consequences of climatic changes. Severe weather events can provide valuable opportunities to uncover the mechanisms through which the weather influences population demography but opportunities to track individual responses to such events are rare. Senner et al. (2015) report on an exceptional opportunity to address this issue, when their detailed studies of a migratory shorebird population were interrupted by an extreme weather event that coincided with spring migration, a key period in the annual cycle of migratory species. Through tracking of individuals across the migratory range, Senner et al. (2015) show that, while individual schedules were severely disrupted by the harsh weather, with many individuals undertaking reverse migrations and experiencing delayed breeding, breeding success was unaffected. This study highlights the complexities involved in predicting the ecological consequences of extreme weather events and the key role of behavioural flexibility in mitigating the costs to individuals.


Asunto(s)
Migración Animal , Charadriiformes/fisiología , Frío , Reproducción , Animales , Femenino , Masculino
8.
Proc Biol Sci ; 281(1774): 20132161, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24225454

RESUMEN

Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants.


Asunto(s)
Adaptación Fisiológica , Migración Animal , Aves/fisiología , Cambio Climático , Animales , Geografía , Comportamiento de Nidificación , Dinámica Poblacional , Estaciones del Año , Factores de Tiempo
9.
Ecology ; 94(1): 11-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23600235

RESUMEN

The relative fitness of individuals across a population can shape distributions and drive population growth rates. Migratory species often winter over large geographic ranges, and individuals in different locations experience very different environmental conditions, including different migration costs, which can potentially create fitness inequalities. Here we used energetics models to quantify the trade-offs experienced by a migratory shorebird species at locations throughout the nonbreeding range, and the associated consequences for migratory performance, survival, and breeding habitat quality. Individuals experiencing more favorable winter conditions had higher survival rates, arrived on the breeding grounds earlier, and occupied better quality breeding areas, even when migration costs are substantially higher, than individuals from locations where the energy balance on the wintering grounds was less favorable. The energy costs and benefits of occupying different winter locations can therefore create fitness inequalities which can shape the distribution and population-wide demography of migratory species.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Metabolismo Energético , Aptitud Genética , Animales , Demografía , Inglaterra , Irlanda , Portugal , Estaciones del Año
10.
Proc Biol Sci ; 279(1727): 411-6, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21715406

RESUMEN

The capacity of species to track changing environmental conditions is a key component of population and range changes in response to environmental change. High levels of local adaptation may constrain expansion into new locations, while the relative fitness of dispersing individuals will influence subsequent population growth. However, opportunities to explore such processes are rare, particularly at scales relevant to species-based conservation strategies. Icelandic black-tailed godwits, Limosa limosa islandica, have expanded their range throughout Iceland over the last century. We show that current male morphology varies strongly in relation to the timing of colonization across Iceland, with small males being absent from recently occupied areas. Smaller males are also proportionately more abundant on habitats and sites with higher breeding success and relative abundance of females. This population-wide spatial structuring of male morphology is most likely to result from female preferences for small males and better-quality habitats increasing both small-male fitness and the dispersal probability of larger males into poorer-quality habitats. Such eco-evolutionary feedbacks may be a key driver of rates of population growth and range expansion and contraction.


Asunto(s)
Adaptación Fisiológica , Migración Animal , Charadriiformes/fisiología , Animales , Tamaño Corporal , Cruzamiento , Charadriiformes/anatomía & histología , Ambiente , Femenino , Islandia , Masculino , Preferencia en el Apareamiento Animal , Fenotipo , Razón de Masculinidad , Factores de Tiempo
11.
Ecol Evol ; 12(8): e9184, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949536

RESUMEN

In migratory systems, variation in individual phenology can arise through differences in individual migratory behaviors, and this may be particularly apparent in partial migrant systems, where migrant and resident individuals are present within the same population. Links between breeding phenology and migratory behavior or success are generally investigated at the individual level. However, for breeding phenology in particular, the migratory behaviors of each member of the pair may need to be considered simultaneously, as breeding phenology will likely be constrained by timing of the pair member that arrives last, and carryover effects on breeding success may vary depending on whether pair members share the same migratory behavior or not. We used tracking of marked individuals and monitoring of breeding success from a partially migrant population of Eurasian oystercatchers (Haematopus ostralegus) breeding in Iceland to test whether (a) breeding phenology varied with pair migratory behavior; (b) within-pair consistency in timing of laying differed among pair migratory behaviors; and (c) reproductive performance varied with pair migratory behavior, timing of laying, and year. We found that annual variation in timing of laying differed among pair migratory behaviors, with resident pairs being more consistent than migrant and mixed pairs, and migrant/mixed pairs breeding earlier than residents in most years but later in one (unusually cold) year. Pairs that laid early were more likely to replace their clutch after nest loss, had higher productivity and higher fledging success, independent of pair migratory behavior. Our study suggests that the links between individual migratory behavior and reproductive success can vary over time and, to a much lesser extent, with mate migratory behavior and can be mediated by differences in laying dates. Understanding these cascading effects of pair phenology on breeding success is likely to be key to predicting the impact of changing environmental conditions on migratory species.

12.
Mov Ecol ; 10(1): 13, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287747

RESUMEN

BACKGROUND: In migratory species, the extent of within- and between-individual variation in migratory strategies can influence potential rates and directions of responses to environmental changes. Quantifying this variation requires tracking of many individuals on repeated migratory journeys. At temperate and higher latitudes, low levels of within-individual variation in migratory behaviours are common and may reflect repeated use of predictable resources in these seasonally-structured environments. However, variation in migratory behaviours in the tropics, where seasonal predictability of food resources can be weaker, remains largely unknown. METHODS: Round Island petrels (Pterodroma sp.) are tropical, pelagic seabirds that breed all year round and perform long-distance migrations. Using multi-year geolocator tracking data from 62 individuals between 2009 and 2018, we quantify levels of within- and between-individual variation in non-breeding distributions and timings. RESULTS: We found striking levels of between-individual variation in at-sea movements and timings, with non-breeding migrations to different areas occurring across much of the Indian Ocean and throughout the whole year. Despite this, repeat-tracking of individual petrels revealed remarkably high levels of spatial and temporal consistency in within-individual migratory behaviour, particularly for petrels that departed at similar times in different years and for those departing in the austral summer. However, while the same areas were used by individuals in different years, they were not necessarily used at the same times during the non-breeding period. CONCLUSIONS: Even in tropical systems with huge ranges of migratory routes and timings, our results suggest benefits of consistency in individual migratory behaviours. Identifying the factors that drive and maintain between-individual variation in migratory behaviour, and the consequences for breeding success and survival, will be key to understanding the consequences of environmental change across migratory ranges.

13.
R Soc Open Sci ; 9(3): 211671, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35360351

RESUMEN

The dynamics of wild populations are governed by demographic rates which vary spatially and/or temporally in response to environmental conditions. Conservation actions for widespread but declining populations could potentially exploit this variation to target locations (or years) in which rates are low, but only if consistent spatial or temporal variation in demographic rates occurs. Using long-term demographic data for wild birds across Europe, we show that productivity tends to vary between sites (consistently across years), while survival rates tend to vary between years (consistently across sites), and that spatial synchrony is more common in survival than productivity. Identifying the conditions associated with low demographic rates could therefore facilitate spatially targeted actions to improve productivity or (less feasibly) forecasting and temporally targeting actions to boost survival. Decomposing spatio-temporal variation in demography can thus be a powerful tool for informing conservation policy and for revealing appropriate scales for actions to influence demographic rates.

14.
Ecol Appl ; 21(6): 2223-31, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21939056

RESUMEN

The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.


Asunto(s)
Antozoos/clasificación , Arrecifes de Coral , Animales , Indias Occidentales
15.
Ambio ; 39(7): 515-23, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21090006

RESUMEN

User fees can contribute to the financial sustainability of marine protected areas (MPAs), yet they must be acceptable to users. We explore changes in the fee system and management of Bonaire National Marine Park (BNMP) from the perspective of users. Responses from 393 tourists indicated that 90% were satisfied with park conditions and considered current user fees reasonable. However, only 47% of divers and 40% of non-divers were prepared to pay more. Diver willingness-to-pay (WTP) appears to have decreased since 1991, but this difference could be due in part to methodological differences between studies. Although current fees are close to diver maximum stated WTP, revenues could potentially be increased by improving the current fee system in ways that users deem acceptable. This potential surplus highlights the value of understanding user perceptions toward MPA fees and management.


Asunto(s)
Conservación de los Recursos Naturales/economía , Comportamiento del Consumidor/economía , Buceo/economía , Naturaleza , Conservación de los Recursos Naturales/métodos , Política Ambiental , Humanos , Indias Occidentales
16.
Adv Mar Biol ; 87(1): 331-360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293016

RESUMEN

Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Región del Caribe , Cambio Climático , Ecosistema , Algas Marinas
17.
Proc Biol Sci ; 276(1669): 3019-25, 2009 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-19515663

RESUMEN

Coral reefs are rich in biodiversity, in large part because their highly complex architecture provides shelter and resources for a wide range of organisms. Recent rapid declines in hard coral cover have occurred across the Caribbean region, but the concomitant consequences for reef architecture have not been quantified on a large scale to date. We provide, to our knowledge, the first region-wide analysis of changes in reef architectural complexity, using nearly 500 surveys across 200 reefs, between 1969 and 2008. The architectural complexity of Caribbean reefs has declined nonlinearly with the near disappearance of the most complex reefs over the last 40 years. The flattening of Caribbean reefs was apparent by the early 1980s, followed by a period of stasis between 1985 and 1998 and then a resumption of the decline in complexity to the present. Rates of loss are similar on shallow (<6 m), mid-water (6-20 m) and deep (>20 m) reefs and are consistent across all five subregions. The temporal pattern of declining architecture coincides with key events in recent Caribbean ecological history: the loss of structurally complex Acropora corals, the mass mortality of the grazing urchin Diadema antillarum and the 1998 El Nino Southern Oscillation-induced worldwide coral bleaching event. The consistently low estimates of current architectural complexity suggest regional-scale degradation and homogenization of reef structure. The widespread loss of architectural complexity is likely to have serious consequences for reef biodiversity, ecosystem functioning and associated environmental services.


Asunto(s)
Antozoos/fisiología , Ecosistema , Animales , Región del Caribe , Modelos Biológicos , Tiempo
18.
Philos Trans R Soc Lond B Biol Sci ; 374(1781): 20180047, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31352888

RESUMEN

Many migratory systems are changing rapidly in space and time, and these changes present challenges for conservation. Changes in local abundance and site occupancy across species' ranges have raised concerns over the efficacy of the existing protected area networks, while changes in phenology can potentially create mismatches in the timing of annual events with the availability of key resources. These changes could arise either through individuals shifting in space and time or through generational shifts in the frequency of individuals using different locations or on differing migratory schedules. Using a long-term study of a migratory shorebird in which individuals have been tracked through a period of range expansion and phenological change, we show that these changes occur through generational shifts in spatial and phenological distributions, and that individuals are highly consistent in space and time. Predictions of future rates of changes in range size and phenology, and their implications for species conservation, will require an understanding of the processes that can drive generational shifts. We therefore explore the developmental, demographic and environmental processes that could influence generational shifts in phenology and distribution, and the studies that will be needed to distinguish among these mechanisms of change. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.


Asunto(s)
Adaptación Fisiológica , Distribución Animal , Variación Biológica Individual , Charadriiformes/fisiología , Migración Animal , Animales
19.
Ecol Evol ; 9(15): 8856-8864, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31410285

RESUMEN

In migratory birds, early arrival on breeding sites is typically associated with greater breeding success, but the mechanisms driving these benefits are rarely known. One mechanism through which greater breeding success among early arrivers can potentially be achieved is the increased time available for replacement clutches following nest loss. However, the contribution of replacement clutches to breeding success will depend on seasonal variation in nest survival rates, and the consequences for juvenile recruitment of hatching at different times in the season. In particular, lower recruitment rates of late-hatched chicks could offset the benefits to early arrivers of being able to lay replacement clutches, which would reduce the likelihood of replacement clutch opportunities influencing selection on migratory timings. Using a simulation model of time-constrained capacity for replacement clutches, paramaterized with empirically-derived estimates from avian migratory systems, we show that greater reproductive success among early-arriving individuals can arise solely through the greater time capacity for replacement clutches among early arrivers, even when later renesting attempts contribute fewer recruits to the population. However, these relationships vary depending on the seasonal pattern of nest survival. The benefits of early arrival are greatest when nest survival rates are constant or decline seasonally, and early arrival is least beneficial when nest success rates increase over the breeding season, although replacement clutches can mitigate this effect. The time benefits of early arrival facilitating replacement clutches following nest loss may therefore be an important but overlooked source of selection on migratory timings. Empirical measures of seasonal variation in nest survival, renesting, and juvenile recruitment rates are therefore needed in order to identify the costs and benefits associated with individual migration phenology, the selection pressures influencing migratory timings, and the implications for ongoing shifts in migration and breeding phenology.

20.
Ecol Evol ; 9(5): 2365-2375, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891186

RESUMEN

Phenological changes in response to climate change have been recorded in many taxa, but the population-level consequences of these changes are largely unknown. If phenological change influences demography, it may underpin the changes in range size and distribution that have been associated with climate change in many species. Over the last century, Icelandic black-tailed godwits (Limosa limosa islandica) have increased 10-fold in numbers, and their breeding range has expanded throughout lowland Iceland, but the environmental and demographic drivers of this expansion remain unknown. Here, we explore the potential for climate-driven shifts in phenology to influence demography and range expansion. In warmer springs, Icelandic black-tailed godwits lay their clutches earlier, resulting in advances in hatching dates in those years. Early hatching is beneficial as population-wide tracking of marked individuals shows that chick recruitment to the adult population is greater for early hatched individuals. Throughout the last century, this population has expanded into progressively colder breeding areas in which hatch dates are later, but temperatures have increased throughout Iceland since the 1960s. Using these established relationships between temperature, hatching dates and recruitment, we show that these warming trends have the potential to have fueled substantial increases in recruitment throughout Iceland, and thus to have contributed to local population growth and expansion across the breeding range. The demographic consequences of temperature-mediated phenological changes, such as the advances in lay dates and increased recruitment associated with early hatching reported here, may therefore be key processes in driving population size and range changes in response to climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA