Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Immunol ; 25(1): 178-188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012416

RESUMEN

Annotation of immunologic gene function in vivo typically requires the generation of knockout mice, which is time consuming and low throughput. We previously developed CHimeric IMmune Editing (CHIME), a CRISPR-Cas9 bone marrow delivery system for constitutive, ubiquitous deletion of single genes. Here we describe X-CHIME, four new CHIME-based systems for modular and rapid interrogation of gene function combinatorially (C-CHIME), inducibly (I-CHIME), lineage-specifically (L-CHIME) or sequentially (S-CHIME). We use C-CHIME and S-CHIME to assess the consequences of combined deletion of Ptpn1 and Ptpn2, an embryonic lethal gene pair, in adult mice. We find that constitutive deletion of both PTPN1 and PTPN2 leads to bone marrow hypoplasia and lethality, while inducible deletion after immune development leads to enteritis and lethality. These findings demonstrate that X-CHIME can be used for rapid mechanistic evaluation of genes in distinct in vivo contexts and that PTPN1 and PTPN2 have some functional redundancy important for viability in adult mice.


Asunto(s)
Sistemas CRISPR-Cas , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Ratones , Animales , Sistemas CRISPR-Cas/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Ratones Noqueados , Sistema Inmunológico , Edición Génica
2.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599172

RESUMEN

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Asunto(s)
Inmunidad Innata , Células Receptoras Sensoriales , Inmunidad Innata/fisiología , Neuroinmunomodulación/fisiología , Homeostasis
3.
Nat Immunol ; 20(10): 1335-1347, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527834

RESUMEN

CD8+ T cell exhaustion is a state of dysfunction acquired in chronic viral infection and cancer, characterized by the formation of Slamf6+ progenitor exhausted and Tim-3+ terminally exhausted subpopulations through unknown mechanisms. Here we establish the phosphatase PTPN2 as a new regulator of the differentiation of the terminally exhausted subpopulation that functions by attenuating type 1 interferon signaling. Deletion of Ptpn2 in CD8+ T cells increased the generation, proliferative capacity and cytotoxicity of Tim-3+ cells without altering Slamf6+ numbers during lymphocytic choriomeningitis virus clone 13 infection. Likewise, Ptpn2 deletion in CD8+ T cells enhanced Tim-3+ anti-tumor responses and improved tumor control. Deletion of Ptpn2 throughout the immune system resulted in MC38 tumor clearance and improved programmed cell death-1 checkpoint blockade responses to B16 tumors. Our results indicate that increasing the number of cytotoxic Tim-3+CD8+ T cells can promote effective anti-tumor immunity and implicate PTPN2 in immune cells as an attractive cancer immunotherapy target.


Asunto(s)
Adenocarcinoma/inmunología , Linfocitos T CD8-positivos/fisiología , Neoplasias del Colon/inmunología , Inmunoterapia/métodos , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Células Progenitoras Linfoides/fisiología , Melanoma/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Neoplasias Cutáneas/inmunología , Animales , Senescencia Celular , Citotoxicidad Inmunológica , Femenino , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Tolerancia Inmunológica , Interferón Tipo I/metabolismo , Masculino , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
4.
Nature ; 617(7960): 377-385, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37138075

RESUMEN

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia , Melanoma , Microbiota , Animales , Humanos , Ratones , Moléculas de Adhesión Celular Neuronal , Modelos Animales de Enfermedad , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Trasplante de Microbiota Fecal , Vida Libre de Gérmenes , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/inmunología , Melanoma/microbiología , Melanoma/terapia , Unión Proteica/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
5.
J Immunol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373572

RESUMEN

CD8+ T cells differentiate into two subpopulations in response to acute viral infection: memory precursor effector cells (MPECs) and short-lived effector cells (SLECs). MPECs and SLECs are epigenetically distinct; however, the epigenetic regulators required for formation of these subpopulations are mostly unknown. In this study, we performed an in vivo CRISPR screen in murine naive CD8+ T cells to identify the epigenetic regulators required for MPEC and SLEC formation, using the acute lymphocytic choriomeningitis virus Armstrong infection model. We identified the ATP-dependent chromatin remodeler CHD7 (chromodomain-helicase DNA-binding protein 7) as a positive regulator of SLEC formation, as knockout (KO) of Chd7 reduced SLECs numerically. In contrast, KO of Chd7 increased the formation of central memory T cells following pathogen clearance yet attenuated memory cell expansion following a rechallenge. These findings establish CHD7 as a novel positive regulator of SLEC and a negative regulator of central memory T cell formation.

7.
J Allergy Clin Immunol ; 151(5): 1169-1177, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37149370

RESUMEN

The skin is a barrier organ populated by many types of skin-resident immune cells and sensory neurons. It has become increasingly appreciated that neuroimmune interactions are an important component of inflammatory diseases such as atopic dermatitis and allergic contact dermatitis. Neuropeptides secreted from nerve terminals play an important role in mediating cutaneous immune cell function, and soluble mediators derived from immune cells interact with neurons to induce itch. In this review article, we will explore emerging research describing neuronal effector functions on skin immune cells in mouse models of atopic and contact dermatitis. We will also discuss the contributions of both specific neuronal subsets and secreted immune factors to itch induction and the associated inflammatory processes. Finally, we will explore how treatment strategies have emerged around these findings and discuss the relationship between scratching and dermatitis.


Asunto(s)
Dermatitis Alérgica por Contacto , Dermatitis Atópica , Ratones , Animales , Neuroinmunomodulación , Prurito , Piel , Células Receptoras Sensoriales
8.
Cytokine ; 136: 155254, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32836028

RESUMEN

The D1 domain of the CD4 co-receptor interacts with MHC class II during Helper CD4+ Th-cell activation and effector function in all gnathostomes but the sequence and structure of this region are not well conserved through phylogeny. Conversely, the proximal D4 domain of CD4 is the binding site of the cytokine IL-16 and is highly conserved, allowing for promiscuous binding of IL-16 to CD4 between disparate gnathostomes. We report here that recombinant human IL-16 (rhIL-16) bound to Xenopus lymphocytes to allow separation on a magnetic column. Incubation with rhIL-16 resulted in an increased expression of MHC class II mRNA by Xenopus CD8- cells more than by CD8+ cells. An in vivo assay demonstrated that rhIL-16 can recruit lymphocytes of Xenopus frogs. Our data suggest that a subset of Xenopus laevis lymphocytes express a CD4 homolog on their surface that is capable of binding IL-16. These results imply that CD4 most likely arose from a primordial cytokine receptor.


Asunto(s)
Antígenos CD4/inmunología , Evolución Molecular , Interleucina-16/farmacología , Linfocitos/inmunología , Proteínas de Xenopus/inmunología , Animales , Humanos , Interleucina-16/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Xenopus laevis
9.
Am J Respir Cell Mol Biol ; 59(6): 684-694, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29958012

RESUMEN

The airway epithelial cell (AEC) response to allergens helps initiate and propagate allergic inflammation in asthma. CARMA3 is a scaffold protein that mediates G protein-coupled receptor-induced NF-κB activation in airway epithelium. In this study, we demonstrate that mice with CARMA3-deficient AECs have reduced airway inflammation, as well as reduced type 2 cytokine levels in response to Alternaria alternata. These mice also have reduced production of IL-33 and IL-25, and reduced numbers of innate lymphoid cells in the lung. We also show that CARMA3-deficient human AECs have decreased production of proasthmatic mediators in response to A. alternata. Finally, we show that CARMA3 interacts with inositol 1,4,5-trisphosphate receptors in AECs, and that inhibition of CARMA3 signaling reduces A. alternata-induced intracellular calcium release. In conclusion, we show that CARMA3 signaling in AECs helps mediate A. alternata-induced allergic airway inflammation, and that CARMA3 is an important signaling molecule for type 2 immune responses in the lung.


Asunto(s)
Alérgenos/inmunología , Alternaria/fisiología , Alternariosis/inmunología , Asma/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Neumonía/inmunología , Alérgenos/metabolismo , Alternariosis/metabolismo , Alternariosis/microbiología , Animales , Asma/metabolismo , Asma/microbiología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Neumonía/metabolismo , Neumonía/microbiología
10.
Biotechnol Bioeng ; 112(1): 129-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24981318

RESUMEN

Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural.


Asunto(s)
Escherichia coli/genética , Furaldehído/metabolismo , Genoma Bacteriano/genética , Ingeniería Metabólica/métodos , Biocombustibles , Evolución Molecular Dirigida , Escherichia coli/metabolismo , Escherichia coli/fisiología , Genoma Bacteriano/fisiología
11.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38979172

RESUMEN

Adult stem cells play a crucial role in tissue homeostasis and repair through multiple mechanisms. In addition to being able to replace aged or damaged cells, stem cells provide signals that contribute to the maintenance and function of neighboring cells. In the lung, airway basal stem cells also produce cytokines and chemokines in response to inhaled irritants, allergens, and pathogens, which affect specific immune cell populations and shape the nature of the immune response. However, direct cell-to-cell signaling through contact between airway basal stem cells and immune cells has not been demonstrated. Recently, a unique population of intraepithelial airway macrophages (IAMs) has been identified in the murine trachea. Here, we demonstrate that IAMs require Notch signaling from airway basal stem cells for maintenance of their differentiated state and function. Furthermore, we demonstrate that Notch signaling between airway basal stem cells and IAMs is required for antigen-induced allergic inflammation only in the trachea where the basal stem cells are located whereas allergic responses in distal lung tissues are preserved consistent with a local circuit linking stem cells to proximate immune cells. Finally, we demonstrate that IAM-like cells are present in human conducting airways and that these cells display Notch activation, mirroring their murine counterparts. Since diverse lung stem cells have recently been identified and localized to specific anatomic niches along the proximodistal axis of the respiratory tree, we hypothesize that the direct functional coupling of local stem cell-mediated regeneration and immune responses permits a compartmentalized inflammatory response.

12.
J Diabetes Sci Technol ; : 19322968231161317, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919680

RESUMEN

Gestational diabetes mellitus (GDM) is a common metabolic disease of pregnancy that threatens the health of several million women and their offspring. The highest prevalence of GDM is seen in women of low socioeconomic status. Women with GDM are at increased risk of adverse maternal outcomes, including increased rates of Cesarean section delivery, preeclampsia, perineal tears, and postpartum hemorrhage. However, of even greater concern is the increased risk to the fetus and long-term health of the child due to elevated glycemia during pregnancy. Although the use of continuous glucose monitoring (CGM) has been shown to reduce the incidence of maternal and fetal complications in pregnant women with type 1 diabetes and type 2 diabetes, most state Medicaid programs do not cover CGM for women with GDM. This article reviews current statistics relevant to the incidence and costs of GDM among Medicaid beneficiaries, summarizes key findings from pregnancy studies using CGM, and presents a rationale for expanding and standardizing CGM coverage for GDM within state Medicaid populations.

13.
Vaccine X ; 9: 100113, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34622199

RESUMEN

Measles-containing vaccines (MCV), specifically vaccines against measles and rubella (MR), are extremely effective and critical for the eradication of measles and rubella diseases. In developed countries, vaccination rates are high and vaccines are readily available, but continued high prevalence of both diseases in developing countries and surges in measles deaths in recent years have highlighted the need to expand vaccination efforts. To meet demand for additional vaccines at a globally affordable price, it is highly desirable to streamline vaccine production thereby reducing cost and speeding up time to delivery. MR vaccine characterization currently relies on the 50% cell culture infectious dose (CCID50) assay, an endpoint assay with low reproducibility that requires 10-14 days to complete. For streamlining bioprocess analysis and improving measurement precision relative to CCID50, we developed the VaxArray Measles and Rubella assay kit, which is based on a multiplexed microarray immunoassay with a 5-hour time to result. Here we demonstrate vaccine-relevant sensitivity ranging from 345 to 800 IFU/mL up to 100,000 IFU/mL (infectious units per mL) and specificity that allows simultaneous analysis in bivalent vaccine samples. The assay is sensitive to antigen stability and has minimal interference from common vaccine additives. The assay exhibits high reproducibility and repeatability, with 15% CV, much lower than the typical 0.3 log10 error (∼65%) observed for the CCID50 assay. The intact protein concentration measured by VaxArray is reasonably correlated to, but not equivalent to, CCID50 infectivity measurements for harvest samples. However, the measured protein concentration exhibits equivalency to CCID50 for more purified samples, including concentrated virus pools and monovalent bulks, making the assay a useful new tool for same-day analysis of vaccine samples for bioprocess development, optimization, and monitoring.

14.
Cancer Immunol Res ; 9(2): 184-199, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33277233

RESUMEN

Metabolic constraints in the tumor microenvironment constitute a barrier to effective antitumor immunity and similarities in the metabolic properties of T cells and cancer cells impede the specific therapeutic targeting of metabolism in either population. To identify distinct metabolic vulnerabilities of CD8+ T cells and cancer cells, we developed a high-throughput in vitro pharmacologic screening platform and used it to measure the cell type-specific sensitivities of activated CD8+ T cells and B16 melanoma cells to a wide array of metabolic perturbations during antigen-specific killing of cancer cells by CD8+ T cells. We illustrated the applicability of this screening platform by showing that CD8+ T cells were more sensitive to ferroptosis induction by inhibitors of glutathione peroxidase 4 (GPX4) than B16 and MC38 cancer cells. Overexpression of ferroptosis suppressor protein 1 (FSP1) or cytosolic GPX4 yielded ferroptosis-resistant CD8+ T cells without compromising their function, while genetic deletion of the ferroptosis sensitivity-promoting enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) protected CD8+ T cells from ferroptosis but impaired antitumor CD8+ T-cell responses. Our screen also revealed high T cell-specific vulnerabilities for compounds targeting NAD+ metabolism or autophagy and endoplasmic reticulum (ER) stress pathways. We focused the current screening effort on metabolic agents. However, this in vitro screening platform may also be valuable for rapid testing of other types of compounds to identify regulators of antitumor CD8+ T-cell function and potential therapeutic targets.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Células Tumorales Cultivadas/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Femenino , Ferroptosis/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico
15.
NPJ Vaccines ; 4: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675394

RESUMEN

Neuraminidase (NA) immunity leads to decreased viral shedding and reduced severity of influenza disease; however, NA content in influenza vaccines is currently not regulated, resulting in inconsistent quality and quantity of NA that can vary from manufacturer to manufacturer, from year to year, and from lot to lot. To address this problem, we have developed an assay for NA quantification that could be used by the industry to move toward developing influenza vaccines that induce a predictable immune response to NA. The VaxArray Influenza Seasonal NA Potency Assay (VXI-sNA) is a multiplexed sandwich immunoassay that relies on six subtype-specific monoclonal antibodies printed in microarray format and a suite of fluor-conjugated "label" antibodies. The performance of the assay as applied to a wide range of influenza vaccines is described herein. The assay demonstrated high NA subtype specificity and high sensitivity, with quantification limits ranging from 1 to 60 ng/mL and linear dynamic ranges of 24-500-fold. When compared to an enzymatic activity assay for samples exposed to thermal degradation conditions, the assay was able to track changes in protein stability over time and exhibited good correlation with enzyme activity. The assay also demonstrated excellent analytical precision with relative error ranging from 6 to 12% over day-to-day, user-to-user, and lot-to-lot variation. The high sensitivity and reproducibility of the assay enabled robust detection and quantification of NA in crude in-process samples and low-dose, adjuvanted vaccines with an accuracy of 100 ± 10%.

16.
Nat Commun ; 10(1): 1668, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971695

RESUMEN

Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient and can perturb cell states. Here we describe CHIME: CHimeric IMmune Editing, a CRISPR-Cas9 bone marrow delivery system to rapidly evaluate gene function in innate and adaptive immune cells in vivo without ex vivo manipulation of these mature lineages. This approach enables efficient deletion of genes of interest in major immune lineages without altering their development or function. We use this approach to perform an in vivo pooled genetic screen and identify Ptpn2 as a negative regulator of CD8+ T cell-mediated responses to LCMV Clone 13 viral infection. These findings indicate that this genetic platform can enable rapid target discovery through pooled screening in immune cells in vivo.


Asunto(s)
Inmunidad Adaptativa/genética , Sistemas CRISPR-Cas/genética , Técnicas de Transferencia de Gen , Pruebas Genéticas/métodos , Inmunidad Innata/genética , Animales , Trasplante de Médula Ósea , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Vectores Genéticos/genética , Genómica/métodos , Células HEK293 , Humanos , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/inmunología , ARN Guía de Kinetoplastida/genética , Quimera por Trasplante , Células Vero
17.
Vaccine ; 36(21): 2937-2945, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29699789

RESUMEN

Practical methods to measure the potency of influenza vaccines are needed as alternatives for the standard single radial immunodiffusion (SRID) assay. VaxArray assays for influenza hemagglutinin (HA) and neuraminidase (NA) have been developed to address this need. In this report, we evaluate the use of these assays to assess the potency of HA and NA of an A/H3N2 subunit vaccine by determining the correlation between the amounts measured by VaxArray and the immunogenicity in mice. The antibody response after one and two doses of five formulations of the vaccine ranging from 5 µg/mL to 80 µg/mL of HA, was measured by hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) assays. For hemagglutinin, vaccine potency determined by VaxArray was equivalent to potency measured SRID and these amounts were predictive of immunogenicity, with excellent correlation between potency measured by VaxArray and the HAI geometric mean titers (GMT). Likewise, the amount of NA measured by VaxArray was predictive of the NAI GMT. The VaxArray NA assay reported non-detectable levels of intact NA for a sample that had been heat degraded at 56 °C for 20 h, demonstrating that the assay measures the native, active form of NA. Similarly, the HA potency measured by VaxArray in this heat-treated sample was very low when a monoclonal antibody was used to detect the amount of antigen bound. Importantly, the force degraded sample induced low HAI titers and the NAI titers were not measurable, supporting the conclusion that the VaxArray HA and NA assays measure the immunogenic forms of these A/H3N2 antigens. This study indicates that VaxArray assays can be used to assess the potency of HA and NA components in influenza vaccines as a proxy for immunogenicity.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Tecnología Farmacéutica/métodos , Potencia de la Vacuna , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Femenino , Pruebas de Inhibición de Hemaglutinación , Vacunas contra la Influenza/administración & dosificación , Ratones Endogámicos BALB C , Pruebas de Neutralización , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
18.
NPJ Vaccines ; 3: 43, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323954

RESUMEN

The VaxArray Influenza Pandemic HA (VXI-pHA) potency assay is a multiplexed sandwich immunoassay that consists of nine broadly reactive yet subtype-specific monoclonal capture antibodies printed in microarray format and a suite of fluor-labeled secondary antibodies that were selected to probe conserved HA epitopes. VXI-pHA was designed to optimize the probability that the ready-to-use assay would work for the most concerning, emergent influenza A strains, eliminating the need for the time-consuming process of reference reagents production. The performance of this new potency test was evaluated using a panel of 48 potentially pandemic strains of influenza viruses and vaccines spanning 16 years of antigenic drift, including the most recent pre-pandemic vaccine being developed against the "5th wave" A/H7N9 virus. The VXI-pHA assay demonstrated coverage of 93%, 92%, and 100% for H5, H7, and H9 antigens, respectively. The assay demonstrated high sensitivity with linear dynamic ranges of more than 150-fold and quantification limits ranging from 1 to 5 ng/mL. For three production lots of H7N9 monobulk drug substance, the assay exhibited excellent accuracy (100 ± 6%) and analytical precision (CV 6 ± 2%). The high assay sensitivity enabled robust detection and quantification of hemagglutinin in crude in-process samples and low-dose, adjuvanted vaccines with an accuracy of 100 ± 10%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA