Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1391751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863538

RESUMEN

Polystyrene nanoplastics and titanium dioxide nanoparticles are widely spread in all environments, often coexisting within identical frameworks. Both these contaminants can induce negative effects on cell and plant physiology, giving concerns on their possible interaction which could increase each other's harmful effects on plants. Despite the urgency of this issue, there is very little literature addressing it. To evaluate the potential risk of this co-contamination, lentil seeds were treated for five days with polystyrene nanoplastics and titanium dioxide nanoparticles (anatase crystalline form), alone and in co-presence. Cytological analyses, and histochemical and biochemical evaluation of oxidative stress were carried out on isolated shoots and roots. TEM analysis seemed to indicate the absence of physical/chemical interactions between the two nanomaterials. Seedlings under cotreatment showed the greatest cytotoxic and genotoxic effects and high levels of oxidative stress markers associated with growth inhibition. Even if biochemical data did not evidence significant differences between materials treated with polystyrene nanoplastics alone or in co-presence with titanium dioxide nanoparticles, histochemical analysis highlighted a different pattern of oxidative markers, suggesting a synergistic effect by the two nanomaterials. In accordance, the fluorescence signal linked to nanoplastics in root and shoot was higher under cotreatment, perhaps due to the well-known ability of titanium dioxide nanoparticles to induce root tissue damage, in this way facilitating the uptake and translocation of polystyrene nanoplastics into the plant body. In the antioxidant machinery, peroxidase activity showed a significant increase in treated roots, in particular under cotreatment, probably more associated with stress-induced lignin synthesis than with hydrogen peroxide detoxification. Present results clearly indicate the worsening by metal nanoparticles of the negative effects of nanoplastics on plants, underlining the importance of research considering the impact of cotreatments with different nanomaterials, which may better reflect the complex environmental conditions.

2.
Antioxidants (Basel) ; 13(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38790701

RESUMEN

Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes in different growth phases; then, the potential protective effects against low-dose CCl4-induced toxicant-associated fatty liver disease (TAFLD) were investigated by administering an aqueous suspension of young leaves to rats daily for two weeks. Quantification of total and individual phenolic compounds and in vitro antioxidant activity assays (DPPH, FRAP, and ORAC) showed the highest values in young leaves compared to mature ones. Salicornia treatment mitigated CCl4-induced hepatic oxidative stress, reducing lipid peroxidation and protein carbonyl levels, and preserving the decrease in glutathione levels. Electronic paramagnetic resonance (EPR) spectroscopy confirmed these results in the liver and evidenced free radicals increase prevention in the brain. Salicornia treatment also attenuated enzymatic disruptions in the liver's drug metabolizing system and Nrf2-dependent antioxidant enzymes. Furthermore, histopathological examination revealed reduced hepatic lipid accumulation and inflammation. Overall, this study highlights Salicornia's potential as a source of bioactive compounds with effective hepatoprotective properties capable to prevent TAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA