Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 67(13)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35609583

RESUMEN

Objective. Monolithic scintillator crystals coupled to silicon photomultiplier (SiPM) arrays are promising detectors for PET applications, offering spatial resolution around 1 mm and depth-of-interaction information. However, their timing resolution has always been inferior to that of pixellated crystals, while the best results on spatial resolution have been obtained with algorithms that cannot operate in real-time in a PET detector. In this study, we explore the capabilities of monolithic crystals with respect to spatial and timing resolution, presenting new algorithms that overcome the mentioned problems.Approach.Our algorithms were tested first using a simulation framework, then on experimentally acquired data. We tested an event timestamping algorithm based on neural networks which was then integrated into a second neural network for simultaneous estimation of the event position and timestamp. Both algorithms are implemented in a low-cost field-programmable gate array that can be integrated in the detector and can process more than 1 million events per second in real-time.Results.Testing the neural network for the simultaneous estimation of the event position and timestamp on experimental data we obtain 0.78 2D FWHM on the (x,y) plane, 1.2 depth-of-interaction FWHM and 156 coincidence time resolution on a25mm×25mm×8mm×LYSO monolith read-out by 643mm×3mmHamamatsu SiPMs.Significance.Our results show that monolithic crystals combined with artificial intelligence can rival pixellated crystals performance for time-of-flight PET applications, while having better spatial resolution and DOI resolution. Thanks to the use of very light neural networks, event characterization can be done on-line directly in the detector, solving the issues of scalability and computational complexity that up to now were preventing the use of monolithic crystals in clinical PET scanners.


Asunto(s)
Inteligencia Artificial , Tomografía de Emisión de Positrones , Algoritmos , Simulación por Computador , Redes Neurales de la Computación , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación
2.
Phys Med ; 102: 9-18, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36030665

RESUMEN

Ultra-High dose-per-pulse regimens (UHDP), necessary to trigger the "FLASH" effect, still pose serious challenges to dosimetry. Dosimetry plays a crucial role, both to significantly improve the accuracy of the radiobiological experiments necessary to fully understand the mechanisms underlying the effect and its dependencies on the beam parameters, and to be able to translate such effect into clinical practice. The standard ionization chamber in UHDP region is significantly affected by the effects of the electric field generated by the enormous density of charges produced by the dose pulse. This work describes the theory and the conceptual design of a gas chamber (the ALLS chamber) which overcomes the above-mentioned problems.


Asunto(s)
Dosis de Radiación , Radiometría
3.
Phys Med ; 103: 175-180, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36370686

RESUMEN

The free electron fraction is the fraction of electrons, produced inside the cavity of an ionization chamber after irradiation, which does not bind to gas molecules and thereby reaches the electrode as free electrons. It is a fundamental quantity to describe the recombination processes of an ionization chamber, as it generates a gap of positive charges compared to negative ones, which certainly will not undergo recombination. The free electron fraction depends on the specific chamber geometry, the polarizing applied voltage and the gas thermodynamic properties. Therefore, it is necessary to evaluate such fraction in an accurate and easy way for any measurement condition. In this paper, a simple and direct method for evaluating the free electron fraction of ionization chambers is proposed. We first model the capture process of the electrons produced inside an ionization chamber after the beam pulse; then we present a method to evaluate the free electron fraction based on simple measurements of collected charge, by varying the applied voltage. Finally, the results obtained using an Advanced Markus chamber irradiated with a Flash Radiotherapy dedicated research Linac (ElectronFlash) to estimate the free electron fraction are presented. The proposed method allows the use of a conventional ionization chamber for measurements in ultra-high-dose-per-pulse (UHDP) conditions, up to values of dose-per-pulse at which the perturbation of the electric field due to the generated charge can be considered negligible.


Asunto(s)
Electrones , Radiometría , Radiometría/métodos , Aceleradores de Partículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA