Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38651653

RESUMEN

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Asunto(s)
Senescencia Celular , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Masculino , Femenino , Persona de Mediana Edad , Senescencia Celular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Biomarcadores/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Adulto , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/inervación
2.
J Physiol ; 601(17): 3825-3846, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37470322

RESUMEN

We investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty-five young adults were divided into an RT+ET group (n = 13), which underwent 7 weeks of RT followed by 7 weeks of ET, and an ET-only group (n = 12), which performed 7 weeks of ET. Body composition, endurance performance and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, after RT for RT+ET and baseline for ET) and after ET (T3). Immunohistochemistry was performed to determine fibre cross-sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodelling. Citrate synthase activity and markers of ribosome content were also investigated. RT improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (P < 0.050). In response to ET, both groups similarly decreased body fat percentage (P < 0.0001) and improved endurance performance (e.g. V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ , and speed at which the onset of blood lactate accumulation occurred, P < 0.0001). Levels of mitochondrial complexes I-IV in the ET-only group increased 32-66%, while those in the RT+ET group increased 1-11% (time, P < 0.050). Additionally, mixed fibre relative mitochondrial content increased 15% in the ET-only group but decreased 13% in the RT+ET group (interaction, P = 0.043). In conclusion, RT performed prior to ET had no additional benefits to ET adaptations. Moreover, prior RT seemed to impair mitochondrial adaptations to ET. KEY POINTS: Resistance training is largely underappreciated as a method to improve endurance performance, despite reports showing it may improve mitochondrial function. Although several concurrent training studies are available, in this study we investigated the effects of performing a period of resistance training on the performance and molecular adaptations to subsequent endurance training. Prior resistance training did not improve endurance performance and impaired most mitochondrial adaptations to subsequent endurance training, but this effect may have been a result of detraining from resistance training.


Asunto(s)
Entrenamiento Aeróbico , Entrenamiento de Fuerza , Masculino , Adulto Joven , Humanos , Entrenamiento de Fuerza/métodos , Adaptación Fisiológica , Composición Corporal/fisiología , Aclimatación , Músculo Esquelético/fisiología
3.
Am J Physiol Cell Physiol ; 321(5): C761-C769, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495762

RESUMEN

The precise matching of blood flow to skeletal muscle during exercise remains an important area of investigation. Release of adenosine triphosphate (ATP) from red blood cells (RBCs) is postulated as a mediator of peripheral vascular tone in response to shear stress, hypoxia, and mechanical deformation. We tested the following hypotheses: 1) RBCs of different densities contain different quantities of ATP; 2) hypoxia is a stimulus for ATP release from RBCs; and 3) hypoxic ATP release from RBCs is related to RBC lysis. Human blood was drawn from male and female volunteers (n = 11); the RBCs were isolated and washed. A Percoll gradient was used to separate RBCs based on cellular density. Density groups were then resuspended to 4% hematocrit and exposed to normoxia or hypoxia in a tonometer. Equilibrated samples were drawn and centrifuged; paired analyses of ATP (luminescence via a luciferase-catalyzed reaction) and hemolysis (Harboe spectrophotometric absorbance assay) were measured in the supernatant. ATP release was not different among low-density cells versus middle-density versus high-density cells. Similarly, hemoglobin (Hb) release was not different among the red blood cell subsets. No difference was found for either ATP release or Hb release following matched exposure to normoxic or hypoxic gas. The concentrations of ATP and Hb for all subsets combined were linearly correlated (r = 0.59, P ≤ 0.001). With simultaneous probing for Hb and ATP in the supernatant of each sample, we conclude that ATP release from RBCs can be explained by hemolysis and that hypoxia per se does not stimulate either ATP release or Hb release from RBCs.


Asunto(s)
Adenosina Trifosfato/sangre , Eritrocitos/metabolismo , Hemólisis , Adulto , Hipoxia de la Célula , Femenino , Hemoglobinas/metabolismo , Humanos , Masculino , Adulto Joven
4.
J Physiol ; 599(3): 737-767, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33112439

RESUMEN

The anaerobic threshold (AT) remains a widely recognized, and contentious, concept in exercise physiology and medicine. As conceived by Karlman Wasserman, the AT coalesced the increase of blood lactate concentration ([La- ]), during a progressive exercise test, with an excess pulmonary carbon dioxide output ( V̇CO2 ). Its principal tenets were: limiting oxygen (O2 ) delivery to exercising muscle→increased glycolysis, La- and H+ production→decreased muscle and blood pH→with increased H+ buffered by blood [HCO3- ]→increased CO2 release from blood→increased V̇CO2 and pulmonary ventilation. This schema stimulated scientific scrutiny which challenged the fundamental premise that muscle anoxia was requisite for increased muscle and blood [La- ]. It is now recognized that insufficient O2 is not the primary basis for lactataemia. Increased production and utilization of La- represent the response to increased glycolytic flux elicited by increasing work rate, and determine the oxygen uptake ( V̇O2 ) at which La- accumulates in the arterial blood (the lactate threshold; LT). However, the threshold for a sustained non-oxidative contribution to exercise energetics is the critical power, which occurs at a metabolic rate often far above the LT and separates heavy from very heavy/severe-intensity exercise. Lactate is now appreciated as a crucial energy source, major gluconeogenic precursor and signalling molecule but there is no ipso facto evidence for muscle dysoxia or anoxia. Non-invasive estimation of LT using the gas exchange threshold (non-linear increase of V̇CO2 versus V̇O2 ) remains important in exercise training and in the clinic, but its conceptual basis should now be understood in light of lactate shuttle biology.


Asunto(s)
Umbral Anaerobio , Prueba de Esfuerzo , Ejercicio Físico , Ácido Láctico , Consumo de Oxígeno , Intercambio Gaseoso Pulmonar
5.
J Physiol ; 599(3): 863-888, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32358865

RESUMEN

Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.


Asunto(s)
Mitocondrias , NAD , Metabolismo Energético , Glucólisis , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa
6.
Artículo en Inglés | MEDLINE | ID: mdl-33212294

RESUMEN

Upon a sudden rise in work rate, ATP turnover increases immediately, whereas the adjustment of ATP resynthesis from oxidative phosphorylation is substantially slower. An "O2 deficit" (energy borrowed from substrate level phosphorylation) is therefore generated. A greater O2 deficit represents an epiphenomenon of a lower "metabolic stability" during the transition, a circumstance directly related to impaired exercise tolerance. In the search for factors responsible for the delayed adjustment of oxidative phosphorylation, we performed studies in the surgically isolated canine gastrocnemius muscle in situ. Enhancement of convective and diffusive microvascular O2 delivery, with respect to a "normal" condition, did not affect skeletal muscle V̇O2 kinetics during transitions to submaximal metabolic rates. V̇O2 kinetics, however, was slowed after experimentally impairing convective O2 delivery, a condition frequently encountered in pathological conditions. Among potential metabolic factors (pyruvate dehydrogenase activation, nitric oxide inhibition of cytochrome oxidase) a limiting role in V̇O2 kinetics was observed only for creatine kinase (CK) mediated phosphocreatine (PCr) breakdown. Following CK inhibition, faster muscle V̇O2 kinetics was observed. Thus, in skeletal muscle CK-catalysed PCr breakdown at contractions onset slows the increase of oxidative phosphorylation. By acting as a high-capacitance energy buffer, PCr breakdown delays or attenuates the increased concentrations of metabolites (such as ADP, Pi, Cr) mediating the V̇O2 increase. Upon sudden increases in ATP turnover, skeletal muscle fibers rely first on the bioenergetic pathway (PCr breakdown), which is fast to adjust to increased metabolic needs. Metabolites related to PCr breakdown regulate, but inevitably slow down, the adjustment of oxidative phosphorylation.


Asunto(s)
Músculo Esquelético/metabolismo , Oxígeno/administración & dosificación , Animales , Perros , Fosforilación Oxidativa , Oxígeno/metabolismo
7.
J Physiol ; 598(12): 2371-2384, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32537774

RESUMEN

KEY POINTS: Increased plasma nitrite concentrations may have beneficial effects on skeletal muscle function. The physiological basis explaining these observations has not been clearly defined and it may involve positive effects on muscle contraction force, microvascular O2 delivery and skeletal muscle oxidative metabolism. In the isolated canine gastrocnemius model, we evaluated the effects of acute nitrite infusion on muscle force and skeletal muscle oxidative metabolism. Under hypoxic conditions, but in the presence of normal convective O2 delivery, an elevated plasma nitrite concentration affects neither muscle force, nor muscle contractile economy. In accordance with previous results suggesting limited or no effects of nitrate/nitrite administrations in highly oxidative and highly perfused muscle, our data suggest that neither mitochondrial respiration, nor muscle force generation are affected by acute increased concentrations of NO precursors in hypoxia. ABSTRACT: Contrasting findings have been reported concerning the effects of augmented nitric oxide (NO) on skeletal muscle force production and oxygen consumption ( V̇O2 ). The present study examined skeletal muscle mitochondrial respiration and contractile economy in an isolated muscle preparation during hypoxia (but normal convective O2 delivery) with nitrite infusion. Isolated canine gastrocnemius muscles in situ (n = 8) were studied during 3 min of electrically stimulated isometric tetanic contractions corresponding to ∼35% of V̇O2peak . During contractions, sodium nitrite (NITRITE) or sodium chloride (SALINE) was infused into the popliteal artery. V̇O2 was calculated from the Fick principle. Experiments were carried out in hypoxia ( FIO2  = 0.12), whereas convective O2 delivery was maintained at normal levels under both conditions by pump-driven blood flow ( Q̇ ). Muscle biopsies were taken and mitochondrial respiration was evaluated by respirometry. Nitrite infusion significantly increased both nitrite and nitrate concentrations in plasma. No differences in force were observed between conditions. V̇O2 was not significantly different between NITRITE (6.1 ± 1.8 mL 100 g-1  min-1 ) and SALINE (6.2 ± 1.8 mL 100 g-1  min-1 ), even after being 'normalized' per unit of developed force (muscle contractile economy). No differences between conditions were found for maximal ADP-stimulated mitochondrial respiration (both for complex I and complex II), leak respiration and oxidative phosphorylation coupling. In conclusion, in the absence of changes in convective O2 delivery, muscle force, muscle contractile economy and mitochondrial respiration were not affected by acute infusion of nitrite. The previously reported positive effects of elevated plasma nitrite concentrations are presumably mediated by the increased microvascular O2 availability.


Asunto(s)
Contracción Muscular , Oxígeno , Animales , Perros , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno
8.
Eur J Appl Physiol ; 120(2): 369-380, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31813045

RESUMEN

PURPOSE: We investigated the effect of ischemic preconditioning (IPC) on performance of a 3 min maximal effort arm ergometer test in young women. METHODS: Twenty healthy women (23.1 (SD 3.3) years) performed a 3 min maximal effort arm cycling exercise, preceded by IPC on both arms or SHAM in a counterbalanced randomized crossover design. Both blood flow (via high resolution ultrasound; n = 17) and muscle oxygenation/deoxygenation (via near infrared spectroscopy; n = 5) were measured throughout the IPC/SHAM. Performance and perceptual/physiological (i.e., heart rate, blood lactate, rating of perceived exertion, and triceps brachialis oxygenation) parameters were recorded during the exercise test. RESULTS: Occlusion during IPC completely blocked brachial artery blood flow, decreased oxygenated hemoglobin/myoglobin (Δ[oxy(Hb + Mb)]), and increased deoxygenated Hb/Mb (Δ[deoxy(Hb + Mb)]). There were no differences (P > 0.797) in performance (peak, mean, and end power output) or in any perceptual/physiological variables during the 3 min all-out test between IPC/SHAM. During exercise, Δ[oxy(Hb + Mb)] initially decreased with no differences (P ≥ 0.296) between conditions and returned towards baseline by the completion of the test while Δ[deoxy(Hb + Mb)] increased with no differences between conditions and remained elevated until completion of the test (P ≥ 0.755). CONCLUSIONS: We verified the successful application of IPC via blood flow and NIRS measures but found no effects on performance of a 3 min maximal effort arm cranking test in young women.


Asunto(s)
Brazo , Prueba de Esfuerzo/métodos , Precondicionamiento Isquémico , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Adulto , Ejercicio Físico , Femenino , Humanos , Adulto Joven
9.
Am J Physiol Cell Physiol ; 317(6): C1313-C1323, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618076

RESUMEN

Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans. Herein, we used a rodent model of voluntary wheel running to determine whether long-term exercise training affects markers of skeletal muscle L1 regulation. Selectively bred high-running female Wistar rats (n = 11 per group) were either given access to a running wheel (EX) or not (SED) at 5 wk of age, and these conditions were maintained until 27 wk of age. Thereafter, mixed gastrocnemius tissue was harvested and analyzed for L1 mRNA expression and DNA content along with other L1 regulation markers. We observed significantly (P < 0.05) lower L1 mRNA expression, higher L1 DNA methylation, and less L1 DNA in accessible chromatin regions in EX versus SED rats. We followed these experiments with 3-h in vitro drug treatments in L6 myotubes to mimic transient exercise-specific signaling events. The AMP-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR; 4 mM) significantly decreased L1 mRNA expression in L6 myotubes. However, this effect was not facilitated through increased L1 DNA methylation. Collectively, these data suggest that long-term voluntary wheel running downregulates skeletal muscle L1 mRNA, and this may occur through chromatin modifications. Enhanced AMPK signaling with repetitive exercise bouts may also decrease L1 mRNA expression, although the mechanism of action remains unknown.


Asunto(s)
Envejecimiento/genética , Cromatina/metabolismo , Elementos de Nucleótido Esparcido Largo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , ARN Mensajero/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Cafeína/farmacología , Cromatina/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , Metilación de ADN , Femenino , Regulación de la Expresión Génica , Ácidos Hidroxámicos/farmacología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Cultivo Primario de Células , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Resveratrol/farmacología , Ribonucleótidos/farmacología , Rotenona/farmacología , Conducta Sedentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA