Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(4): 935-949, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477512

RESUMEN

Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagia , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Relacionadas con la Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Masculino , Ratones , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Pliegue de Proteína , Proteolisis
2.
Mol Cell ; 83(11): 1921-1935.e7, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201526

RESUMEN

Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Ubiquitinación , Proteínas de Ciclo Celular/metabolismo
3.
Nat Immunol ; 17(4): 379-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901151

RESUMEN

The T cell antigen receptor (TCR) is unique in that its affinity for ligand is unknown before encounter and can vary by orders of magnitude. How the immune system regulates individual T cells that display very different reactivity to antigen remains unclear. Here we found that activated CD4(+) T cells, at the peak of clonal expansion, persistently downregulated their TCR expression in proportion to the strength of the initial antigen recognition. This programmed response increased the threshold for cytokine production and recall proliferation in a clone-specific manner and ultimately excluded clones with the highest antigen reactivity. Thus, programmed downregulation of TCR expression represents a negative feedback mechanism for constraining T cell effector function with a suitable time delay to thereby allow pathogen control while avoiding excess inflammatory damage.


Asunto(s)
Regulación hacia Abajo , Listeriosis/inmunología , Receptores de Antígenos de Linfocitos T/genética , Células TH1/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Immunoblotting , Listeria monocytogenes , Activación de Linfocitos , Ratones , Ratones Transgénicos , Mycobacterium tuberculosis , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T , Transcriptoma
4.
Cell ; 148(6): 1089-98, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22424221

RESUMEN

During the past decade, cancer drug development has shifted from a focus on cytotoxic chemotherapies to drugs that target specific molecular alterations in tumors. Although these drugs dramatically shrink tumors, the responses are temporary. Research is now focused on overcoming drug resistance, a frequent cause of treatment failure. Here we reflect on analogous challenges faced by researchers in infectious diseases. We compare and contrast the resistance mechanisms arising in cancer and infectious diseases and discuss how approaches for overcoming viral and bacterial infections, such as HIV and tuberculosis, are instructive for developing a more rational approach for cancer therapy. In particular, maximizing the effect of the initial treatment response, which often requires synergistic combination therapy, is foremost among these approaches. A remaining challenge in both fields is identifying drugs that eliminate drug-tolerant "persister" cells (infectious disease) or tumor-initiating/stem cells (cancer) to prevent late relapse and shorten treatment duration.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Terapia Combinada , Farmacorresistencia Microbiana , Infecciones por VIH/tratamiento farmacológico , Humanos , Insuficiencia del Tratamiento , Tuberculosis/tratamiento farmacológico
5.
Mol Cell ; 73(6): 1150-1161.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792173

RESUMEN

The 26S proteasome is the ATP-dependent protease responsible for regulating the proteome of eukaryotic cells through degradation of mainly ubiquitin-tagged substrates. In order to understand how proteasome responds to ubiquitin signal, we resolved an ensemble of cryo-EM structures of proteasome in the presence of K48-Ub4, with three of them resolved at near-atomic resolution. We identified a conformation with stabilized ubiquitin receptors and a previously unreported orientation of the lid, assigned as a Ub-accepted state C1-b. We determined another structure C3-b with localized K48-Ub4 to the toroid region of Rpn1, assigned as a substrate-processing state. Our structures indicate that tetraUb induced conformational changes in proteasome could initiate substrate degradation. We also propose a CP gate-opening mechanism involving the propagation of the motion of the lid to the gate through the Rpn6-α2 interaction. Our results enabled us to put forward a model of a functional cycle for proteasomes induced by tetraUb and nucleotide.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Microscopía por Crioelectrón , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/ultraestructura , Unión Proteica , Conformación Proteica , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Relación Estructura-Actividad , Ubiquitina/ultraestructura , Ubiquitinación
6.
Mol Cell ; 72(1): 152-161.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174294

RESUMEN

Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/genética , Rec A Recombinasas/genética , Tuberculosis/genética , Adenosina Trifosfatasas/genética , Cardiolipinas/genética , Daño del ADN/genética , Humanos , Mutagénesis/genética , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Serina/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
7.
Nature ; 571(7764): 270-274, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31207604

RESUMEN

Tumour-specific CD8 T cell dysfunction is a differentiation state that is distinct from the functional effector or memory T cell states1-6. Here we identify the nuclear factor TOX as a crucial regulator of the differentiation of tumour-specific T (TST) cells. We show that TOX is highly expressed in dysfunctional TST cells from tumours and in exhausted T cells during chronic viral infection. Expression of TOX is driven by chronic T cell receptor stimulation and NFAT activation. Ectopic expression of TOX in effector T cells in vitro induced a transcriptional program associated with T cell exhaustion. Conversely, deletion of Tox in TST cells in tumours abrogated the exhaustion program: Tox-deleted TST cells did not upregulate genes for inhibitory receptors (such as Pdcd1, Entpd1, Havcr2, Cd244 and Tigit), the chromatin of which remained largely inaccessible, and retained high expression of transcription factors such as TCF-1. Despite their normal, 'non-exhausted' immunophenotype, Tox-deleted TST cells remained dysfunctional, which suggests that the regulation of expression of inhibitory receptors is uncoupled from the loss of effector function. Notably, although Tox-deleted CD8 T cells differentiated normally to effector and memory states in response to acute infection, Tox-deleted TST cells failed to persist in tumours. We hypothesize that the TOX-induced exhaustion program serves to prevent the overstimulation of T cells and activation-induced cell death in settings of chronic antigen stimulation such as cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diferenciación Celular/inmunología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/metabolismo , Neoplasias/inmunología , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/deficiencia , Proteínas del Grupo de Alta Movilidad/genética , Proteínas de Homeodominio/genética , Humanos , Memoria Inmunológica , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Neoplasias/patología , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Transcripción Genética
8.
Nucleic Acids Res ; 51(1): 218-235, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36610794

RESUMEN

Mycobacterium smegmatis Lhr exemplifies a novel clade of helicases composed of an N-terminal ATPase/helicase domain (Lhr-Core) and a large C-terminal domain (Lhr-CTD) that nucleates a unique homo-tetrameric quaternary structure. Expression of Lhr, and its operonic neighbor Nei2, is induced in mycobacteria exposed to mitomycin C (MMC). Here we report that lhr deletion sensitizes M. smegmatis to killing by DNA crosslinkers MMC and cisplatin but not to killing by monoadduct-forming alkylating agent methyl methanesulfonate or UV irradiation. Testing complementation of MMC and cisplatin sensitivity by expression of Lhr mutants in Δlhr cells established that: (i) Lhr-CTD is essential for DNA repair activity, such that Lhr-Core does not suffice; (ii) ATPase-defective mutant D170A/E171A fails to complement; (iii) ATPase-active, helicase-defective mutant W597A fails to complement and (iv) alanine mutations at the CTD-CTD interface that interdict homo-tetramer formation result in failure to complement. Our results instate Lhr's ATP-driven motor as an agent of inter-strand crosslink repair in vivo, contingent on Lhr's tetrameric quaternary structure. We characterize M. smegmatis Nei2 as a monomeric enzyme with AP ß-lyase activity on single-stranded DNA. Counter to previous reports, we find Nei2 is inactive as a lyase at a THF abasic site and has feeble uracil glycosylase activity.


Asunto(s)
Mitomicina , Mycobacterium , Mitomicina/farmacología , Cisplatino/farmacología , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Mycobacterium/genética , Adenosina Trifosfatasas/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple
9.
Semin Cell Dev Biol ; 132: 16-26, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35764457

RESUMEN

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Asunto(s)
COVID-19 , Interferones , Humanos , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Antivirales , Poliproteínas , Inmunidad , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitina Tiolesterasa
10.
J Immunol ; 208(5): 1042-1056, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149530

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that recognize microbial vitamin B metabolites and have emerging roles in infectious disease, autoimmunity, and cancer. Although MAIT cells are identified by a semi-invariant TCR, their phenotypic and functional heterogeneity is not well understood. Here we present an integrated single cell transcriptomic analysis of over 76,000 human MAIT cells during early and prolonged Ag-specific activation with the MR1 ligand 5-OP-RU and nonspecific TCR stimulation. We show that MAIT cells span a broad range of homeostatic, effector, helper, tissue-infiltrating, regulatory, and exhausted phenotypes, with distinct gene expression programs associated with CD4+ or CD8+ coexpression. During early activation, MAIT cells rapidly adopt a cytotoxic phenotype characterized by high expression of GZMB, IFNG and TNF In contrast, prolonged stimulation induces heterogeneous states defined by proliferation, cytotoxicity, immune modulation, and exhaustion. We further demonstrate a FOXP3 expressing MAIT cell subset that phenotypically resembles conventional regulatory T cells. Moreover, scRNAseq-defined MAIT cell subpopulations were also detected in individuals recently exposed to Mycobacterium tuberculosis, confirming their presence during human infection. To our knowledge, our study provides the first comprehensive atlas of human MAIT cells in activation conditions and defines substantial functional heterogeneity, suggesting complex roles in health and disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Mycobacterium tuberculosis/inmunología , Proliferación Celular , Células Cultivadas , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Granzimas/metabolismo , Homeostasis/inmunología , Humanos , Interferón gamma/metabolismo , Células T Invariantes Asociadas a Mucosa/citología , Receptores de Antígenos de Linfocitos T/inmunología , Ribitol/análogos & derivados , Ribitol/inmunología , Análisis de la Célula Individual , Transcriptoma/genética , Factor de Necrosis Tumoral alfa/metabolismo , Uracilo/análogos & derivados , Uracilo/inmunología
11.
Cell ; 138(1): 146-59, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596241

RESUMEN

Mycobacterium tuberculosis is arguably the world's most successful infectious agent because of its ability to control its own cell growth within the host. Bacterial growth rate is closely coupled to rRNA transcription, which in E. coli is regulated through DksA and (p)ppGpp. The mechanisms of rRNA transcriptional control in mycobacteria, which lack DksA, are undefined. Here we identify CarD as an essential mycobacterial protein that controls rRNA transcription. Loss of CarD is lethal for mycobacteria in culture and during infection of mice. CarD depletion leads to sensitivity to killing by oxidative stress, starvation, and DNA damage, accompanied by failure to reduce rRNA transcription. CarD can functionally replace DksA for stringent control of rRNA transcription, even though CarD associates with a different site on RNA polymerase. These findings highlight a distinct molecular mechanism for regulating rRNA transcription in mycobacteria that is critical for M. tuberculosis pathogenesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/fisiología , ARN Ribosómico/genética , Tuberculosis/microbiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Daño del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ratones , Viabilidad Microbiana , Datos de Secuencia Molecular , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Estrés Oxidativo , Regiones Promotoras Genéticas , ARN Ribosómico/metabolismo , Alineación de Secuencia , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
12.
J Bacteriol ; 205(4): e0043122, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36916909

RESUMEN

RNase H enzymes participate in various processes that require processing of RNA-DNA hybrids, including DNA replication, transcription, and ribonucleotide excision from DNA. Mycobacteria encode multiple RNase H enzymes, and prior data indicate that RNase HI activity is essential for mycobacterial viability. However, the additional roles of mycobacterial RNase Hs are unknown, including whether RNase HII (RnhB and RnhD) excises chromosomal ribonucleotides misincorporated during DNA replication and whether individual RNase HI enzymes (RnhA and RnhC) mediate additional phenotypes. We find that loss of RNase HII activity in Mycobacterium smegmatis (through combined deletion of rnhB/rnhD) or individual RNase HI enzymes does not affect growth, hydroxyurea sensitivity, or mutagenesis, whereas overexpression (OE) of either RNase HII severely compromises bacterial viability. We also show that deletion of rnhC, which encodes a protein with an N-terminal RNase HI domain and a C-terminal acid phosphatase domain, confers sensitivity to rifampin and oxidative stress as well as loss of light-induced carotenoid pigmentation. These phenotypes are due to loss of the activity of the C-terminal acid phosphatase domain rather than the RNase HI activity, suggesting that the acid phosphatase activity may confer rifampin resistance through the antioxidant properties of carotenoid pigment production. IMPORTANCE Mycobacteria encode multiple RNase H enzymes, with RNase HI being essential for viability. Here, we examine additional functions of RNase H enzymes in mycobacteria. We find that RNase HII is not involved in mutagenesis but is highly toxic when overexpressed. The RNase HI enzyme RnhC is required for tolerance to rifampin, but this role is surprisingly independent of its RNase H activity and is instead mediated by an autonomous C-terminal acid phosphatase domain. This study provides new insights into the functions of the multiple RNase H enzymes of mycobacteria.


Asunto(s)
Mycobacterium smegmatis , Rifampin , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Rifampin/farmacología , Fosfatasa Ácida/metabolismo , Secuencia de Aminoácidos , Especificidad por Sustrato , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , ADN/metabolismo , Pigmentación
13.
Nucleic Acids Res ; 49(22): 12805-12819, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871411

RESUMEN

DNA repair systems allow microbes to survive in diverse environments that compromise chromosomal integrity. Pathogens such as Mycobacterium tuberculosis must contend with the genotoxic host environment, which generates the mutations that underlie antibiotic resistance. Mycobacteria encode the widely distributed SOS pathway, governed by the LexA repressor, but also encode PafBC, a positive regulator of the transcriptional DNA damage response (DDR). Although the transcriptional outputs of these systems have been characterized, their full functional division of labor in survival and mutagenesis is unknown. Here, we specifically ablate the PafBC or SOS pathways, alone and in combination, and test their relative contributions to repair. We find that SOS and PafBC have both distinct and overlapping roles that depend on the type of DNA damage. Most notably, we find that quinolone antibiotics and replication fork perturbation are inducers of the PafBC pathway, and that chromosomal mutagenesis is codependent on PafBC and SOS, through shared regulation of the DnaE2/ImuA/B mutasome. These studies define the complex transcriptional regulatory network of the DDR in mycobacteria and provide new insight into the regulatory mechanisms controlling the genesis of antibiotic resistance in M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/genética , Reparación del ADN/genética , Mutagénesis , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Respuesta SOS en Genética/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Daño del ADN , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Especificidad de la Especie
14.
Proc Natl Acad Sci U S A ; 117(32): 19517-19527, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32727901

RESUMEN

Oxidative damage to DNA is a threat to the genomic integrity and coding accuracy of the chromosomes of all living organisms. Guanine is particularly susceptible to oxidation, and 8-oxo-dG (OG), when produced in situ or incorporated by DNA polymerases, is highly mutagenic due to mispairing with adenine. In many bacteria, defense against OG depends on MutT enzymes, which sanitize OG in the nucleotide pool, and the MutM/Y system, which counteracts OG in chromosomal DNA. In Escherichia coli, antibiotic lethality has been linked to oxidative stress and the downstream consequences of OG processing. However, in mycobacteria, the role of these systems in genomic integrity and antibiotic lethality is not understood, in part because mycobacteria encode four MutT enzymes and two MutMs, suggesting substantial redundancy. Here, we definitively probe the role of OG handling systems in mycobacteria. We find that, although MutT4 is the only MutT enzyme required for resistance to oxidative stress, this effect is not due to OG processing. We find that the dominant system that defends against OG-mediated mutagenesis is MutY/MutM1, and this system is dedicated to in situ chromosomal oxidation rather than correcting OG incorporated by accessory polymerases (DinB1/DinB2/DinB3/DnaE2). In addition, we uncover that mycobacteria resist antibiotic lethality through nucleotide sanitization by MutTs, and in the absence of this system, accessory DNA polymerases and MutY/M contribute to antibiotic-induced lethality. These results reveal a complex, multitiered system of OG handling in mycobacteria with roles in oxidative stress resistance, mutagenesis, and antibiotic lethality.


Asunto(s)
Antibacterianos/metabolismo , Cromosomas Bacterianos/metabolismo , Reparación del ADN/genética , Mycobacterium/genética , Estrés Oxidativo , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN , Tolerancia a Medicamentos , Mutagénesis , Mutación , Mycobacterium/crecimiento & desarrollo , Mycobacterium/metabolismo , Oxidación-Reducción
15.
Proc Natl Acad Sci U S A ; 117(31): 18627-18637, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32680964

RESUMEN

Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer is the only bacterial cancer therapy approved for clinical use. Although presumed to induce T cell-mediated immunity, whether tumor elimination depends on bacteria-specific or tumor-specific immunity is unknown. Herein we show that BCG-induced bladder tumor elimination requires CD4 and CD8 T cells, although augmentation or inhibition of bacterial antigen-specific T cell responses does not alter the efficacy of BCG-induced tumor elimination. In contrast, BCG stimulates long-term tumor-specific immunity that primarily depends on CD4 T cells. We demonstrate that BCG therapy results in enhanced effector function of tumor-specific CD4 T cells, mainly through enhanced production of IFN-γ. Accordingly, BCG-induced tumor elimination and tumor-specific immune memory require tumor cell expression of the IFN-γ receptor, but not MHC class II. Our findings establish that a bacterial immunotherapy for cancer is capable of inducing tumor immunity, an antitumor effect that results from enhanced function of tumor-specific CD4 T cells, and ultimately requires tumor-intrinsic IFN-γ signaling, via a mechanism that is distinct from other tumor immunotherapies.


Asunto(s)
Antineoplásicos/inmunología , Vacuna BCG/inmunología , Inmunoterapia/métodos , Interferón gamma/inmunología , Neoplasias de la Vejiga Urinaria , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Humanos , Ratones , Neoplasias Experimentales/inmunología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia
16.
Molecules ; 27(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956818

RESUMEN

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Mitosis , Procesamiento Proteico-Postraduccional , Ubiquitina , Anticuerpos/genética , Anticuerpos/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Mitosis/genética , Mitosis/fisiología , Fosforilación , Unión Proteica/genética , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Quinasa Tipo Polo 1
17.
EMBO J ; 36(4): 536-548, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28057704

RESUMEN

Mycobacterium tuberculosis (Mtb) can persist in the human host in a latent state for decades, in part because it has the ability to withstand numerous stresses imposed by host immunity. Prior studies have established the essentiality of the periplasmic protease MarP for Mtb to survive in acidified phagosomes and establish and maintain infection in mice. However, the proteolytic substrates of MarP that mediate these phenotypes were unknown. Here, we used biochemical methods coupled with supravital chemical probes that facilitate imaging of nascent peptidoglycan to demonstrate that during acid stress MarP cleaves the peptidoglycan hydrolase RipA, a process required for RipA's activation. Failure of RipA processing in MarP-deficient cells leads to cell elongation and chain formation, a hallmark of progeny cell separation arrest. Our results suggest that sustaining peptidoglycan hydrolysis, a process required for cell elongation, separation of progeny cells, and cell wall homeostasis in growing cells, may also be essential for Mtb's survival in acidic conditions.


Asunto(s)
Ácidos/toxicidad , Proteínas Bacterianas/metabolismo , Activación Enzimática , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/fisiología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Péptido Hidrolasas/metabolismo , Estrés Fisiológico , Mycobacterium tuberculosis/genética , Péptido Hidrolasas/deficiencia
18.
Biochem Soc Trans ; 49(2): 629-644, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33729481

RESUMEN

Ubiquitination is the major criteria for the recognition of a substrate-protein by the 26S proteasome. Additionally, a disordered segment on the substrate - either intrinsic or induced - is critical for proteasome engagement. The proteasome is geared to interact with both of these substrate features and prepare it for degradation. To facilitate substrate accessibility, resting proteasomes are characterised by a peripheral distribution of ubiquitin receptors on the 19S regulatory particle (RP) and a wide-open lateral surface on the ATPase ring. In this substrate accepting state, the internal channel through the ATPase ring is discontinuous, thereby obstructing translocation of potential substrates. The binding of the conjugated ubiquitin to the ubiquitin receptors leads to contraction of the 19S RP. Next, the ATPases engage the substrate at a disordered segment, energetically unravel the polypeptide and translocate it towards the 20S catalytic core (CP). In this substrate engaged state, Rpn11 is repositioned at the pore of the ATPase channel to remove remaining ubiquitin modifications and accelerate translocation. C-termini of five of the six ATPases insert into corresponding lysine-pockets on the 20S α-ring to complete 20S CP gate opening. In the resulting substrate processing state, the ATPase channel is fully contiguous with the translocation channel into the 20S CP, where the substrate is proteolyzed. Complete degradation of a typical ubiquitin-conjugate takes place over a few tens of seconds while hydrolysing tens of ATP molecules in the process (50 kDa/∼50 s/∼80ATP). This article reviews recent insight into biochemical and structural features that underlie substrate recognition and processing by the 26S proteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Ubiquitina/química , Ubiquitinación , Animales , Humanos , Cinética , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Ubiquitina/metabolismo
19.
Mol Cell ; 50(4): 528-39, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23665229

RESUMEN

Ubiquitin-binding domains (UBDs) differentially recognize ubiquitin (ub) modifications. Some of them specifically bind mono-ub, as has been shown for the CUE domain. Interestingly, so far no significant ubiquitin binding has been observed for the CUE domain of yeast Cue1p. Cue1p is receptor and activator of the ubiquitin-conjugating enzyme Ubc7p. It integrates Ubc7p into endoplasmic reticulum (ER) membrane-bound ubiquitin ligase complexes, and thus, it is crucial for ER-associated protein degradation (ERAD). Here we show that the CUE domain of Cue1p binds ubiquitin chains, which is pivotal for the efficient formation of K48-linked polyubiquitin chains in vitro. Mutations that abolish ubiquitin binding by Cue1p affect the turnover of ERAD substrates in vivo. Our data strongly imply that the CUE domain facilitates substrate ubiquitylation by stabilizing growing ubiquitin chains at the ERAD ubiquitin ligases. Hence, we demonstrate an unexpected function of a UBD in the regulation of ubiquitin chain synthesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Electroforesis en Gel de Poliacrilamida , Lisina/genética , Lisina/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Poliubiquitina/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
20.
Infect Immun ; 89(1)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33077620

RESUMEN

Mucosa-associated invariant T (MAIT) cells are an innate-like T cell subset in mammals that recognize microbial vitamin B metabolites presented by the evolutionarily conserved major histocompatibility complex class I (MHC I)-related molecule, MR1. Emerging data suggest that MAIT cells may be an attractive target for vaccine-induced protection against bacterial infections because of their rapid cytotoxic responses at mucosal services to a widely conserved bacterial ligand. In this study, we tested whether a MAIT cell priming strategy could protect against aerosol Mycobacterium tuberculosis infection in mice. Intranasal costimulation with the lipopeptide Toll-like receptor (TLR)2/6 agonist, Pam2Cys (P2C), and the synthetic MR1 ligand, 5-OP-RU, resulted in robust expansion of MAIT cells in the lung. Although MAIT cell priming significantly enhanced MAIT cell activation and expansion early after M. tuberculosis challenge, these MAIT cells did not restrict M. tuberculosis bacterial load. MAIT cells were depleted by the onset of the adaptive immune response, with decreased detection of granzyme B+ and gamma interferon (IFN-γ)+ MAIT cells relative to that in uninfected P2C/5-OP-RU-treated mice. Decreasing the infectious inoculum, varying the time between priming and aerosol infection, and testing MAIT cell priming in nitric oxide synthase 2 (NOS2)-deficient mice all failed to reveal an effect of P2C/5-OP-RU-induced MAIT cells on M. tuberculosis control. We conclude that intranasal MAIT cell priming in mice induces early MAIT cell activation and expansion after M. tuberculosis exposure, without attenuating M. tuberculosis growth, suggesting that MAIT cell enrichment in the lung is not sufficient to control M. tuberculosis infection.


Asunto(s)
Células T Invariantes Asociadas a Mucosa/inmunología , Mycobacterium tuberculosis/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/microbiología , Ribitol/análogos & derivados , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Uracilo/análogos & derivados , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Inmunidad Mucosa , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos , Ratones , Células T Invariantes Asociadas a Mucosa/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Ribitol/inmunología , Ribitol/farmacología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/metabolismo , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología , Uracilo/inmunología , Uracilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA