RESUMEN
The biota of European rivers are affected by a wide range of stressors impairing water quality and hydro-morphology. Only about 40% of Europe's rivers reach 'good ecological status', a target set by the European Water Framework Directive (WFD) and indicated by the biota. It is yet unknown how the different stressors in concert impact ecological status and how the relationship between stressors and status differs between river types. We linked the intensity of seven stressors to recently measured ecological status data for more than 50,000 sub-catchment units (covering almost 80% of Europe's surface area), which were distributed among 12 broad river types. Stressor data were either derived from remote sensing data (extent of urban and agricultural land use in the riparian zone) or modelled (alteration of mean annual flow and of base flow, total phosphorous load, total nitrogen load and mixture toxic pressure, a composite metric for toxic substances), while data on ecological status were taken from national statutory reporting of the second WFD River Basin Management Plans for the years 2010-2015. We used Boosted Regression Trees to link ecological status to stressor intensities. The stressors explained on average 61% of deviance in ecological status for the 12 individual river types, with all seven stressors contributing considerably to this explanation. On average, 39.4% of the deviance was explained by altered hydro-morphology (morphology: 23.2%; hydrology: 16.2%), 34.4% by nutrient enrichment and 26.2% by toxic substances. More than half of the total deviance was explained by stressor interaction, with nutrient enrichment and toxic substances interacting most frequently and strongly. Our results underline that the biota of all European river types are determined by co-occurring and interacting multiple stressors, lending support to the conclusion that fundamental management strategies at the catchment scale are required to reach the ambitious objective of good ecological status of surface waters.
Asunto(s)
Monitoreo del Ambiente , Ríos , Ecosistema , Hidrología , Calidad del AguaRESUMEN
Blooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium-high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium-high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature, while in polymictic, medium-high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a "one-size fits-all" approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account.
Asunto(s)
Cianobacterias , Lagos/microbiología , Cambio Climático , Ambiente , Europa (Continente) , Fósforo/análisis , FitoplanctonRESUMEN
Agriculture impacts the ecological status of freshwaters through multiple pressures such as diffuse pollution, water abstraction, and hydromorphological alteration, strongly impairing riverine biodiversity. The agricultural effects, however, likely differ between agricultural types and practices. In Europe, agricultural types show distinct spatial patterns related to intensity, biophysical conditions, and socioeconomic history, which have been operationalised by various landscape typologies. Our study aimed at analysing whether incorporating agricultural intensity enhances the correlation between agricultural land use and the ecological status. For this, we aggregated the continent's agricultural activities into 20 Areas of Farming-induced Freshwater Pressures (AFFP), specifying individual pressure profiles regarding nutrient enrichment, pesticides, water abstraction, and agricultural land use in the riparian zone to establish an agricultural intensity index and related this intensity index to the river ecological status. Using the agricultural intensity index, nearly doubled the correlative strength between agriculture and the ecological status of rivers as compared to the share of agriculture in the sub-catchment (based on the analysis of more than 50,000 sub-catchment units). Strongest agricultural pressures were found for high intensity cropland in the Mediterranean and Temperate regions, while extensive grassland, fallow farmland and livestock farming in the Northern and Highland regions, as well as low intensity mosaic farming, featured lowest pressures. The results provide advice for pan-European management of freshwater ecosystems and highlight the urgent need for more sustainable agriculture. Consequently, they can also be used as a basis for European Union-wide and global policies to halt biodiversity decline, such as the post-2027 renewal of the Common Agricultural Policy.
Asunto(s)
Ecosistema , Ríos , Monitoreo del Ambiente/métodos , Agricultura/métodos , Europa (Continente)RESUMEN
Aquatic ecosystems are affected by man-made pressures, often causing combined impacts. The analysis of the impacts of chemical pollution is however commonly separate from that of other pressures and their impacts. This evolved from differences in the data available for applied ecology vis-à-vis applied ecotoxicology, which are field gradients and laboratory toxicity tests, respectively. With this study, we demonstrate that the current approach of chemical impact assessment, consisting of comparing measured concentrations to protective environmental quality standards for individual chemicals, is not optimal. In reply, and preparing for a method that would enable the comprehensive assessment and management of water quality pressures, we evaluate various quantitative chemical pollution pressure metrics for mixtures of chemicals in a case study with 24 priority substances of Europe-wide concern. We demonstrate why current methods are sub-optimal for water quality management prioritization and that chemical pollution currently imposes limitations to the ecological status of European surface waters. We discuss why management efforts may currently fail to restore a good ecological status, given that to date only 0.2% of the compounds in trade are considered in European water quality assessment and management.
RESUMEN
Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.
Asunto(s)
Ecosistema , Agua Dulce , Biota , Europa (Continente) , RíosRESUMEN
European countries have defined >1000 national river types and >400 national lake types to implement the EU Water Framework Directive (WFD). In addition, common river and lake types have been defined within regions of Europe for intercalibrating the national classification systems for ecological status of water bodies. However, only a low proportion of national types correspond to these common intercalibration types. This causes uncertainty concerning whether the classification of ecological status is consistent across countries. Therefore, through an extensive dialogue with and data provision from all EU countries, we have developed a generic typology for European rivers and lakes. This new broad typology reflects the natural variability in the most commonly used environmental type descriptors: altitude, size and geology, as well as mean depth for lakes. These broad types capture 60-70% of all national WFD types including almost 80% of all European river and lake water bodies in almost all EU countries and can also be linked to all the common intercalibration types. The typology provides a new framework for large-scale assessments across country borders, as demonstrated with an assessment of ecological status and pressures based on European data from the 2nd set of river basin management plans. The typology can also be used for a variety of other large-scale assessments, such as reviewing and linking the water body types to habitat types under the Habitats Directive and the European Nature Information System (EUNIS), as well as comparing type-specific limit values for nutrients and other supporting quality elements across countries. Thus, the broad typology can build the basis for all scientific outputs of managerial relevance related to water body types.
RESUMEN
The Water Framework Directive (WFD) is a pioneering piece of legislation that aims to protect and enhance aquatic ecosystems and promote sustainable water use across Europe. There is growing concern that the objective of good status, or higher, in all EU waters by 2027 is a long way from being achieved in many countries. Through questionnaire analysis of almost 100 experts, we provide recommendations to enhance WFD monitoring and assessment systems, improve programmes of measures and further integrate with other sectoral policies. Our analysis highlights that there is great potential to enhance assessment schemes through strategic design of monitoring networks and innovation, such as earth observation. New diagnostic tools that use existing WFD monitoring data, but incorporate novel statistical and trait-based approaches could be used more widely to diagnose the cause of deterioration under conditions of multiple pressures and deliver a hierarchy of solutions for more evidence-driven decisions in river basin management. There is also a growing recognition that measures undertaken in river basin management should deliver multiple benefits across sectors, such as reduced flood risk, and there needs to be robust demonstration studies that evaluate these. Continued efforts in 'mainstreaming' water policy into other policy sectors is clearly needed to deliver wider success with WFD goals, particularly with agricultural policy. Other key policy areas where a need for stronger integration with water policy was recognised included urban planning (waste water treatment), flooding, climate and energy (hydropower). Having a deadline for attaining the policy objective of good status is important, but even more essential is to have a permanent framework for river basin management that addresses the delays in implementation of measures. This requires a long-term perspective, far beyond the current deadline of 2027.
RESUMEN
Water resources globally are affected by a complex mixture of stressors resulting from a range of drivers, including urban and agricultural land use, hydropower generation and climate change. Understanding how stressors interfere and impact upon ecological status and ecosystem services is essential for developing effective River Basin Management Plans and shaping future environmental policy. This paper details the nature of these problems for Europe's water resources and the need to find solutions at a range of spatial scales. In terms of the latter, we describe the aims and approaches of the EU-funded project MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) and the conceptual and analytical framework that it is adopting to provide this knowledge, understanding and tools needed to address multiple stressors. MARS is operating at three scales: At the water body scale, the mechanistic understanding of stressor interactions and their impact upon water resources, ecological status and ecosystem services will be examined through multi-factorial experiments and the analysis of long time-series. At the river basin scale, modelling and empirical approaches will be adopted to characterise relationships between multiple stressors and ecological responses, functions, services and water resources. The effects of future land use and mitigation scenarios in 16 European river basins will be assessed. At the European scale, large-scale spatial analysis will be carried out to identify the relationships amongst stress intensity, ecological status and service provision, with a special focus on large transboundary rivers, lakes and fish. The project will support managers and policy makers in the practical implementation of the Water Framework Directive (WFD), of related legislation and of the Blueprint to Safeguard Europe's Water Resources by advising the 3rd River Basin Management Planning cycle, the revision of the WFD and by developing new tools for diagnosing and predicting multiple stressors.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Recursos Hídricos , Abastecimiento de Agua , Cambio Climático , Monitoreo del Ambiente , Política Ambiental , Modelos TeóricosRESUMEN
The debate over the suitability of molecular biological methods for the enumeration of regulatory microbial parameters (e.g. Faecal Indicator Organisms [FIOs]) in bathing waters versus the use of traditional culture-based methods is of current interest to regulators and the science community. Culture-based methods require a 24-48hour turn-around time from receipt at the laboratory to reporting, whilst quantitative molecular tools provide a more rapid assay (approximately 2-3h). Traditional culturing methods are therefore often viewed as slow and 'out-dated', although they still deliver an internationally 'accepted' evidence-base. In contrast, molecular tools have the potential for rapid analysis and their operational utility and associated limitations and uncertainties should be assessed in light of their use for regulatory monitoring. Here we report on the recommendations from a series of international workshops, chaired by a UK Working Group (WG) comprised of scientists, regulators, policy makers and other stakeholders, which explored and interrogated both molecular (principally quantitative polymerase chain reaction [qPCR]) and culture-based tools for FIO monitoring under the European Bathing Water Directive. Through detailed analysis of policy implications, regulatory barriers, stakeholder engagement, and the needs of the end-user, the WG identified a series of key concerns that require critical appraisal before a potential shift from culture-based approaches to the employment of molecular biological methods for bathing water regulation could be justified.