RESUMEN
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and ß chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Asunto(s)
VIH-1/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Células Cultivadas , Clonación Molecular , Epítopos de Linfocito T/inmunología , Expresión Génica , Humanos , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
B-cell maturation antigen (BCMA) is a target for the treatment of multiple myeloma with cytolytic therapies, such as chimeric antigen receptor T-cells or T-cell redirecting antibodies. To better understand the potential for "on-target/off-tumor" toxicity caused by BCMA-targeting cytolytic therapies in the brain, we investigated normal brain BCMA expression. An immunohistochemistry (IHC) assay using the E6D7B commercial monoclonal antibody was applied to 107 formalin-fixed, paraffin-embedded brain samples (cerebrum, basal ganglia, cerebellum, brainstem; 63 unique donors). Although immunoreactivity was observed in a small number of neurons in brain regions including the striatum, thalamus, midbrain, and medulla, this immunoreactivity was considered nonspecific and not reflective of BCMA expression because it was distinct from the membranous and Golgi-like pattern seen in positive control samples, was not replicated when a different IHC antibody (D6 clone) was used, and was not corroborated by in situ hybridization data. Analysis of RNA-sequencing data from 478 donors in the GTEx and Allen BrainSpan databases demonstrated low levels of BCMA RNA expression in the striatum of young donors with levels becoming negligible beyond 30 years of age. We concluded that BCMA protein is not present in normal adult human brain, and therefore on-target toxicity in the brain is unlikely.