Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Cell ; 27(3): 823-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25724637

RESUMEN

Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi.


Asunto(s)
Lotus/microbiología , Medicago truncatula/microbiología , Micorrizas/fisiología , Oryza/microbiología , Transducción de Señal , Simbiosis , Señalización del Calcio/efectos de los fármacos , Quitina/análogos & derivados , Quitina/farmacología , Quitosano , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/metabolismo , Lipopolisacáridos/farmacología , Medicago truncatula/efectos de los fármacos , Medicago truncatula/genética , Datos de Secuencia Molecular , Micorrizas/efectos de los fármacos , Oligosacáridos/farmacología , Oryza/efectos de los fármacos , Oryza/genética , Plantones/efectos de los fármacos , Plantones/microbiología , Transducción de Señal/efectos de los fármacos , Simbiosis/efectos de los fármacos
2.
New Phytol ; 213(4): 1802-1817, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27861989

RESUMEN

Plant defenses induced by salicylic acid (SA) are vital for resistance against biotrophic pathogens. In basal and receptor-triggered immunity, SA accumulation is promoted by Enhanced Disease Susceptibility1 with its co-regulator Phytoalexin Deficient4 (EDS1/PAD4). Current models position EDS1/PAD4 upstream of SA but their functional relationship remains unclear. In a genetic and transcriptomic analysis of Arabidopsis autoimmunity caused by constitutive or conditional EDS1/PAD4 overexpression, intrinsic EDS1/PAD4 signaling properties and their relation to SA were uncovered. A core EDS1/PAD4 pathway works in parallel with SA in basal and effector-triggered bacterial immunity. It protects against disabled SA-regulated gene expression and pathogen resistance, and is distinct from a known SA-compensatory route involving MAPK signaling. Results help to explain previously identified EDS1/PAD4 regulated SA-dependent and SA-independent gene expression sectors. Plants have evolved an alternative route for preserving SA-regulated defenses against pathogen or genetic perturbations. In a proposed signaling framework, EDS1 with PAD4, besides promoting SA biosynthesis, maintains important SA-related resistance programs, thereby increasing robustness of the innate immune system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad de la Planta , Ácido Salicílico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Autoinmunidad/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Estradiol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Transcripción Genética/efectos de los fármacos
3.
BMC Plant Biol ; 16: 17, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26772971

RESUMEN

BACKGROUND: Receptor-like kinases are well-known to play key roles in disease resistance. Among them, the Wall-associated kinases (WAKs) have been shown to be positive regulators of fungal disease resistance in several plant species. WAK genes are often transcriptionally regulated during infection but the pathways involved in this regulation are not known. In rice, the OsWAK gene family is significantly amplified compared to Arabidopsis. The possibility that several WAKs participate in different ways to basal defense has not been addressed. Moreover, the direct requirement of rice OSWAK genes in regulating defense has not been explored. RESULTS: Here we show using rice (Oryza sativa) loss-of-function mutants of four selected OsWAK genes, that individual OsWAKs are required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. While OsWAK14, OsWAK91 and OsWAK92 positively regulate quantitative resistance, OsWAK112d is a negative regulator of blast resistance. In addition, we show that the very early transcriptional regulation of the rice OsWAK genes is triggered by chitin and is partially under the control of the chitin receptor CEBiP. Finally, we show that OsWAK91 is required for H2O2 production and sufficient to enhance defense gene expression during infection. CONCLUSIONS: We conclude that the rice OsWAK genes studied are part of basal defense response, potentially mediated by chitin from fungal cell walls. This work also shows that some OsWAKs, like OsWAK112d, may act as negative regulators of disease resistance.


Asunto(s)
Magnaporthe/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/enzimología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Pared Celular/enzimología , Quitina/inmunología , Expresión Génica , Genes de Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética
4.
Mol Plant Microbe Interact ; 28(8): 943-53, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25915452

RESUMEN

Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat and other cereals. F. graminearum also causes disease in Arabidopsis thaliana. In both Arabidopsis and wheat, F. graminearum infection is limited by salicylic acid (SA) signaling. Here, we show that, in Arabidopsis, the defense regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) and its interacting partners, PAD4 (PHYTOALEXIN-DEFICIENT4) and SAG101 (SENESCENCE-ASSOCIATED GENE101), promote SA accumulation to curtail F. graminearum infection. Characterization of plants expressing the PAD4 noninteracting eds1(L262P) indicated that interaction between EDS1 and PAD4 is critical for limiting F. graminearum infection. A conserved serine in the predicted acyl hydrolase catalytic triad of PAD4, which is not required for defense against bacterial and oomycete pathogens, is necessary for limiting F. graminearum infection. These results suggest a molecular configuration of PAD4 in Arabidopsis defense against F. graminearum that is different from its defense contribution against other pathogens. We further show that constitutive expression of Arabidopsis PAD4 can enhance FHB resistance in Arabidopsis and wheat. Taken together with previous studies of wheat and Arabidopsis expressing salicylate hydroxylase or the SA-response regulator NPR1 (NON-EXPRESSER OF PR GENES1), our results show that exploring fundamental processes in a model plant provides important leads to manipulating crops for improved disease resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Fusarium/patogenicidad , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Dominio Catalítico , Proteínas de Unión al ADN/genética , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Serina/metabolismo
5.
Plant Physiol ; 158(4): 1860-72, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22353573

RESUMEN

The Arabidopsis (Arabidopsis thaliana) lipase-like protein PHYTOALEXIN DEFICIENT4 (PAD4) is essential for defense against green peach aphid (GPA; Myzus persicae) and the pathogens Pseudomonas syringae and Hyaloperonospora arabidopsidis. In basal resistance to virulent strains of P. syringae and H. arabidopsidis, PAD4 functions together with its interacting partner ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defenses. By contrast, dissociated forms of PAD4 and EDS1 signal effector-triggered immunity to avirulent strains of these pathogens. PAD4-controlled defense against GPA requires neither EDS1 nor SA. Here, we show that resistance to GPA is unaltered in an eds1 salicylic acid induction deficient2 (sid2) double mutant, indicating that redundancy between EDS1 and SID2-dependent SA, previously reported for effector-triggered immunity conditioned by certain nucleotide-binding-leucine-rich repeat receptors, does not explain the dispensability of EDS1 and SID2 in defense against GPA. Mutation of a conserved serine (S118) in the predicted lipase catalytic triad of PAD4 abolished PAD4-conditioned antibiosis and deterrence against GPA feeding, but S118 was dispensable for deterring GPA settling and promoting senescence in GPA-infested plants as well as for pathogen resistance. These results highlight distinct molecular activities of PAD4 determining particular aspects of defense against aphids and pathogens.


Asunto(s)
Áfidos/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/parasitología , Hidrolasas de Éster Carboxílico/metabolismo , Peronospora/fisiología , Prunus/parasitología , Pseudomonas syringae/fisiología , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Antibiosis/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Resistencia a la Enfermedad/inmunología , Conducta Alimentaria , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Datos de Secuencia Molecular , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Exudados de Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Haz Vascular de Plantas/metabolismo , Haz Vascular de Plantas/microbiología , Haz Vascular de Plantas/parasitología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
6.
PLoS Pathog ; 6: e1000970, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20617163

RESUMEN

An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/fisiología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/inmunología , Proteínas de Unión al ADN/inmunología , Dexametasona/farmacología , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Transporte de Proteínas
7.
Mol Plant Microbe Interact ; 24(11): 1345-58, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21692638

RESUMEN

Legumes form endosymbiotic associations with nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi which facilitate nutrient uptake. Both symbiotic interactions require a molecular signal exchange between the plant and the symbiont, and this involves a conserved symbiosis (Sym) signaling pathway. In order to identify plant genes required for intracellular accommodation of nitrogen-fixing bacteria and AM fungi, we characterized Medicago truncatula symbiotic mutants defective for rhizobial infection of nodule cells and colonization of root cells by AM hyphae. Here, we describe mutants impaired in the interacting protein of DMI3 (IPD3) gene, which has been identified earlier as an interacting partner of the calcium/calmodulin-dependent protein, a member of the Sym pathway. The ipd3 mutants are impaired in both rhizobial and mycorrhizal colonization and we show that IPD3 is necessary for appropriate Nod-factor-induced gene expression. This indicates that IPD3 is a member of the common Sym pathway. We observed differences in the severity of ipd3 mutants that appear to be the result of the genetic background. This supports the hypothesis that IPD3 function is partially redundant and, thus, additional genetic components must exist that have analogous functions to IPD3. This explains why mutations in an essential component of the Sym pathway have defects at late stages of the symbiotic interactions.


Asunto(s)
Genes de Plantas , Medicago truncatula/genética , Micorrizas/fisiología , Rhizobium/fisiología , Transducción de Señal , Simbiosis , Alelos , Clonación Molecular , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Fijación del Nitrógeno , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas del Sistema de Dos Híbridos
8.
Plant Signal Behav ; 11(4): e1149676, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26853099

RESUMEN

Receptor-like kinases (RLKs) play key roles in disease resistance, in particular basal immunity. They recognize patterns produced by the pathogen invasion and often work as complexes in the plasma membrane. Among these RLKs, there is increasing evidence in several plant species of the key role of Wall-associated kinases (WAKs) in disease resistance. We recently showed using rice (Oryza sativa) loss-of-function mutants of three transcriptionally co-regulated OsWAK genes that individual OsWAKs are positively required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. This finding was unexpected since WAK genes belong to large gene families where functional redundancy is expected. Here we provide evidence that this may be due to complex physical interaction between OsWAK proteins.


Asunto(s)
Membrana Celular/enzimología , Pared Celular/enzimología , Complejos Multiproteicos/metabolismo , Oryza/enzimología , Oryza/inmunología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Modelos Biológicos , Unión Proteica
9.
Curr Opin Plant Biol ; 26: 1-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26043435

RESUMEN

Plants can establish root endosymbioses with both arbuscular mycorrhizal fungi and rhizobial bacteria to improve their nutrition. Our understanding of the molecular events underlying the establishment of these symbioses has significantly advanced in the last few years. Here I highlight major recent findings in the field of endosymbiosis signaling. Despite the identification of new signaling components and the definition, or in some cases better re-definition of the molecular functions of previously known players, major questions still remain that need to be addressed. Most notably the mechanisms defining signaling specificities within either symbiosis remain unclear.


Asunto(s)
Micorrizas/fisiología , Simbiosis/fisiología , Raíces de Plantas/microbiología , Plantas/microbiología , Rhizobium/fisiología , Transducción de Señal
10.
Science ; 350(6267): 1521-4, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26680197

RESUMEN

In terrestrial ecosystems, plants take up phosphate predominantly via association with arbuscular mycorrhizal fungi (AMF). We identified loss of responsiveness to AMF in the rice (Oryza sativa) mutant hebiba, reflected by the absence of physical contact and of characteristic transcriptional responses to fungal signals. Among the 26 genes deleted in hebiba, DWARF 14 LIKE is, the one responsible for loss of symbiosis . It encodes an alpha/beta-fold hydrolase, that is a component of an intracellular receptor complex involved in the detection of the smoke compound karrikin. Our finding reveals an unexpected plant recognition strategy for AMF and a previously unknown signaling link between symbiosis and plant development.


Asunto(s)
Furanos/metabolismo , Hidrolasas/metabolismo , Micorrizas/fisiología , Oryza/enzimología , Oryza/microbiología , Proteínas de Plantas/metabolismo , Piranos/metabolismo , Simbiosis/fisiología , Hidrolasas/genética , Oryza/genética , Fosfatos/metabolismo , Proteínas de Plantas/genética , Simbiosis/genética , Transcripción Genética
11.
Plant Signal Behav ; 8(10)2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24270627

RESUMEN

The establishment of the symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi requires a very tight molecular dialogue. Most of the known plant genes necessary for this process are also required for nodulation in legume plants and only very recently genes specifically required for AM symbiosis have been described. Among them we identified RAM (Reduced Arbuscular Mycorrhization)1 and RAM2, a GRAS transcription factor and a GPAT respectively, which are critical for the induction of hyphopodia formation in AM fungi. RAM2 function is also required for appressoria formation by the pathogen Phytophtora palmivora. Here we investigated the activity of RAM1 and RAM2 promoters during mycorrhization and the role of RAM1 and RAM2 during infection by the root pathogen Aphanomyces euteiches. pRAM1 is activated without cell type specificity before hyphopodia formation, while pRAM2 is specifically active in arbusculated cells providing evidence for a potential function of cutin momomers in the regulation of arbuscule formation. Furthermore, consistent with what we observed with Phytophtora, RAM2 but not RAM 1 is required during Aphanomyces euteiches infection.


Asunto(s)
Simbiosis/fisiología , Aphanomyces/genética , Aphanomyces/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Regiones Promotoras Genéticas/genética , Simbiosis/genética
12.
Curr Biol ; 22(23): 2242-6, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23122843

RESUMEN

The symbiotic association between plants and arbuscular mycorrhizal fungi is almost ubiquitous within the plant kingdom, and the early stages of the association are controlled by plant-derived strigolactones acting as a signal to the fungus in the rhizosphere and lipochito-oligosaccharides acting as fungal signals to the plant. Hyphopodia form at the root surface, allowing the initial invasion, and this is analogous to appressoria, infection structures of pathogenic fungi and oomycetes. Here, we characterize RAM2, a gene of Medicago truncatula required for colonization of the root by mycorrhizal fungi, which is necessary for appropriate hyphopodia and arbuscule formation. RAM2 encodes a glycerol-3-phosphate acyl transferase (GPAT) and is involved in the production of cutin monomers. Plants defective in RAM2 are unable to be colonized by arbuscular mycorrhizal fungi but also show defects in colonization by an oomycete pathogen, with the absence of appressoria formation. RAM2 defines a direct signaling function, because exogenous addition of the C16 aliphatic fatty acids associated with cutin are sufficient to promote hyphopodia/appressoria formation. Thus, cutin monomers act as plant signals that promote colonization by arbuscular mycorrhizal fungi, and this signaling function has been recruited by pathogenic oomycetes to facilitate their own invasion.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/genética , Medicago truncatula/genética , Lípidos de la Membrana/metabolismo , Micorrizas/fisiología , Oomicetos/fisiología , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Interacciones Huésped-Parásitos , Medicago truncatula/enzimología , Datos de Secuencia Molecular , Transducción de Señal , Simbiosis
13.
Curr Biol ; 22(23): 2236-41, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23122845

RESUMEN

Legumes establish mutualistic associations with mycorrhizal fungi and with nitrogen-fixing rhizobial bacteria. These interactions occur following plant recognition of Nod factor from rhizobial bacteria and Myc factor from mycorrhizal fungi. A common symbiosis signaling pathway is involved in the recognition of both Nod factor and Myc factor and is required for the establishment of these two symbioses. The outcomes of these associations differ, and therefore, despite the commonality in signaling, there must be mechanisms that allow specificity. In Nod factor signaling, a complex of GRAS-domain transcription factors controls gene expression downstream of the symbiosis signaling pathway. Here, we show that a GRAS-domain transcription factor, RAM1, functions in mycorrhizal-specific signaling. Plants mutated in RAM1 are unable to be colonized by mycorrhizal fungi, with a defect in hyphopodia formation on the surface of the root. RAM1 is specifically required for Myc factor signaling and appears to have no role in Nod factor signaling. RAM1 regulates the expression of RAM2, a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. We conclude that mycorrhizal signaling downstream of the symbiosis-signaling pathway has parallels with nodulation-specific signaling and functions to promote mycorrhizal colonization by regulating cutin biosynthesis.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lípidos de la Membrana/biosíntesis , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Transducción de Señal , Simbiosis , Factores de Transcripción/genética
14.
Plant Cell ; 18(4): 1038-51, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16531493

RESUMEN

Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) controls defense activation and programmed cell death conditioned by intracellular Toll-related immune receptors that recognize specific pathogen effectors. EDS1 is also needed for basal resistance to invasive pathogens by restricting the progression of disease. In both responses, EDS1, assisted by its interacting partner, PHYTOALEXIN-DEFICIENT4 (PAD4), regulates accumulation of the phenolic defense molecule salicylic acid (SA) and other as yet unidentified signal intermediates. An Arabidopsis whole genome microarray experiment was designed to identify genes whose expression depends on EDS1 and PAD4, irrespective of local SA accumulation, and potential candidates of an SA-independent branch of EDS1 defense were found. We define two new immune regulators through analysis of corresponding Arabidopsis loss-of-function insertion mutants. FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) positively regulates the EDS1 pathway, and one member (NUDT7) of a family of cytosolic Nudix hydrolases exerts negative control of EDS1 signaling. Analysis of fmo1 and nudt7 mutants alone or in combination with sid2-1, a mutation that severely depletes pathogen-induced SA production, points to SA-independent functions of FMO1 and NUDT7 in EDS1-conditioned disease resistance and cell death. We find instead that SA antagonizes initiation of cell death and stunting of growth in nudt7 mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Unión al ADN/metabolismo , Oxigenasas/metabolismo , Pirofosfatasas/metabolismo , Ácido Salicílico/farmacología , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Muerte Celular , Secuencia Conservada , Proteínas de Unión al ADN/genética , Inmunidad Innata , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Hidrolasas Nudix
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA