Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Genet ; 19(10): e1010979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844085

RESUMEN

Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.


Asunto(s)
Proteínas de Drosophila , Exosomas , Animales , Humanos , Masculino , Vesículas de Núcleo Denso , Drosophila , Proteínas de Drosophila/genética , Exosomas/genética , Proteínas , Proteínas de Unión al GTP rab/genética , Factor de Transcripción AP-1
2.
PLoS Genet ; 19(6): e1010815, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363926

RESUMEN

In prostate cancer, loss of the tumour suppressor gene, Retinoblastoma (Rb), and consequent activation of transcription factor E2F1 typically occurs at a late-stage of tumour progression. It appears to regulate a switch to an androgen-independent form of cancer, castration-resistant prostate cancer (CRPC), which frequently still requires androgen receptor (AR) signalling. We have previously shown that upon mating, binucleate secondary cells (SCs) of the Drosophila melanogaster male accessory gland (AG), which share some similarities with prostate epithelial cells, switch their growth regulation from a steroid-dependent to a steroid-independent form of Ecdysone Receptor (EcR) control. This physiological change induces genome endoreplication and allows SCs to rapidly replenish their secretory compartments, even when ecdysone levels are low because the male has not previously been exposed to females. Here, we test whether the Drosophila Rb homologue, Rbf, and E2F1 regulate this switch. Surprisingly, we find that excess Rbf activity reversibly suppresses binucleation in adult SCs. We also demonstrate that Rbf, E2F1 and the cell cycle regulators, Cyclin D (CycD) and Cyclin E (CycE), are key regulators of mating-dependent SC endoreplication, as well as SC growth in both virgin and mated males. Importantly, we show that the CycD/Rbf/E2F1 axis requires the EcR, but not ecdysone, to trigger CycE-dependent endoreplication and endoreplication-associated growth in SCs, mirroring changes seen in CRPC. Furthermore, Bone Morphogenetic Protein (BMP) signalling, mediated by the BMP ligand Decapentaplegic (Dpp), intersects with CycD/Rbf/E2F1 signalling to drive endoreplication in these fly cells. Overall, our work reveals a signalling switch, which permits rapid growth of SCs and increased secretion after mating, independently of previous exposure to females. The changes observed share mechanistic parallels with the pathological switch to hormone-independent AR signalling seen in CRPC, suggesting that the latter may reflect the dysregulation of a currently unidentified physiological process.


Asunto(s)
Proteínas de Drosophila , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Animales , Femenino , Masculino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Endorreduplicación , Ecdisona/genética , Ecdisona/metabolismo , Factor de Transcripción E2F1/genética , Factores de Transcripción/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
EMBO J ; 39(16): e103009, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32720716

RESUMEN

Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.


Asunto(s)
Proliferación Celular , Exosomas , Glutamina/deficiencia , Sistema de Señalización de MAP Quinasas , Neoplasias , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495334

RESUMEN

Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lípidos/química , Microesferas , Semen/química , Animales , Proteínas de Drosophila/genética , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Mutación/genética , Proteoma/metabolismo , Conducta Sexual Animal , Especificidad de la Especie
5.
Br J Cancer ; 128(3): 471-473, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36385555

RESUMEN

Extracellular vesicles (EVs) are released by all cells and produced at particularly high levels by many cancer cells, often inducing pro-tumorigenic effects. Since these cancer EVs carry tumour proteins and RNAs, they can potentially be used at biomarkers. The heterogeneity of surface markers and cargos carried by EVs, however, presents some challenges to developing such approaches. Nanou et al. [1] found that automated counting of large tumour-derived EVs (tdEVs) performed at least as effectively as counting circulating tumour-derived cells (CTCs) and with higher sensitivity, in distinguishing the survival of patients with castration-resistant prostate cancer (CRPC), metastatic colorectal cancer (mCRC) and metastatic breast cancer (MBC), but not for non-small cell lung cancer (NSCLC). Subsequent work has suggested that these tdEVs may also be used to assess tumour subtype and that the number of large EVs produced by endothelial cells can also be increased in cancer patients. While by itself, the tdEV imaging approach used by Nanou et al. [1] is not specific enough to predict the survival of individual patients, in combination with other EV-associated assays, this test, perhaps enhanced through the inclusion of other tumour antigens, could prove invaluable in predicting cancer survival and other outcomes in the clinic.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Neoplasias Primarias Secundarias , Células Neoplásicas Circulantes , Masculino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Pronóstico , Células Endoteliales/patología , Neoplasias Pulmonares/patología , Vesículas Extracelulares/metabolismo , Células Neoplásicas Circulantes/patología , Neoplasias Primarias Secundarias/patología
6.
PLoS Biol ; 18(3): e3000657, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163406

RESUMEN

While many regulators of axon regeneration have been identified, very little is known about mechanisms that allow dendrites to regenerate after injury. Using a Drosophila model of dendrite regeneration, we performed a candidate screen of receptor tyrosine kinases (RTKs) and found a requirement for RTK-like orphan receptor (Ror). We confirmed that Ror was required for regeneration in two different neuron types using RNA interference (RNAi) and mutants. Ror was not required for axon regeneration or normal dendrite development, suggesting a specific role in dendrite regeneration. Ror can act as a Wnt coreceptor with frizzleds (fzs) in other contexts, so we tested the involvement of Wnt signaling proteins in dendrite regeneration. We found that knockdown of fz, dishevelled (dsh), Axin, and gilgamesh (gish) also reduced dendrite regeneration. Moreover, Ror was required to position dsh and Axin in dendrites. We recently found that Wnt signaling proteins, including dsh and Axin, localize microtubule nucleation machinery in dendrites. We therefore hypothesized that Ror may act by regulating microtubule nucleation at baseline and during dendrite regeneration. Consistent with this hypothesis, localization of the core nucleation protein γTubulin was reduced in Ror RNAi neurons, and this effect was strongest during dendrite regeneration. In addition, dendrite regeneration was sensitive to partial reduction of γTubulin. We conclude that Ror promotes dendrite regeneration as part of a Wnt signaling pathway that regulates dendritic microtubule nucleation.


Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/metabolismo , Regeneración Nerviosa/fisiología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Neuronas/fisiología , Interferencia de ARN , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Wnt/genética , Receptores Wnt/metabolismo , Vía de Señalización Wnt
7.
PLoS Biol ; 17(10): e3000145, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31589603

RESUMEN

Male reproductive glands like the mammalian prostate and the paired Drosophila melanogaster accessory glands secrete seminal fluid components that enhance fecundity. In humans, the prostate, stimulated by environmentally regulated endocrine and local androgens, grows throughout adult life. We previously showed that in fly accessory glands, secondary cells (SCs) and their nuclei also grow in adults, a process enhanced by mating and controlled by bone morphogenetic protein (BMP) signalling. Here, we demonstrate that BMP-mediated SC growth is dependent on the receptor for the developmental steroid ecdysone, whose concentration is reported to reflect sociosexual experience in adults. BMP signalling appears to regulate ecdysone receptor (EcR) levels via one or more mechanisms involving the EcR's N terminus or the RNA sequence that encodes it. Nuclear growth in virgin males is dependent on ecdysone, some of which is synthesised in SCs. However, mating induces additional BMP-mediated nuclear growth via a cell type-specific form of hormone-independent EcR signalling, which drives genome endoreplication in a subset of adult SCs. Switching to hormone-independent endoreplication after mating allows growth and secretion to be hyperactivated independently of ecdysone levels in SCs, permitting more rapid replenishment of the accessory gland luminal contents. Our data suggest mechanistic parallels between this physiological, behaviour-induced signalling switch and altered pathological signalling associated with prostate cancer progression.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/metabolismo , Genoma de los Insectos , Proteínas de Insectos/genética , Receptores de Esteroides/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Copulación/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Masculino , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/metabolismo , Transducción de Señal
8.
Proc Natl Acad Sci U S A ; 116(25): 12452-12461, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31152137

RESUMEN

Tumor hypoxia is associated with poor patient outcomes in estrogen receptor-α-positive (ERα+) breast cancer. Hypoxia is known to affect tumor growth by reprogramming metabolism and regulating amino acid (AA) uptake. Here, we show that the glutamine transporter, SNAT2, is the AA transporter most frequently induced by hypoxia in breast cancer, and is regulated by hypoxia both in vitro and in vivo in xenografts. SNAT2 induction in MCF7 cells was also regulated by ERα, but it became predominantly a hypoxia-inducible factor 1α (HIF-1α)-dependent gene under hypoxia. Relevant to this, binding sites for both HIF-1α and ERα overlap in SNAT2's cis-regulatory elements. In addition, the down-regulation of SNAT2 by the ER antagonist fulvestrant was reverted in hypoxia. Overexpression of SNAT2 in vitro to recapitulate the levels induced by hypoxia caused enhanced growth, particularly after ERα inhibition, in hypoxia, or when glutamine levels were low. SNAT2 up-regulation in vivo caused complete resistance to antiestrogen and, partially, anti-VEGF therapies. Finally, high SNAT2 expression levels correlated with hypoxia profiles and worse outcome in patients given antiestrogen therapies. Our findings show a switch in the regulation of SNAT2 between ERα and HIF-1α, leading to endocrine resistance in hypoxia. Development of drugs targeting SNAT2 may be of value for a subset of hormone-resistant breast cancer.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/patología , Hipoxia de la Célula , Resistencia a Antineoplásicos , Moduladores de los Receptores de Estrógeno/uso terapéutico , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptor alfa de Estrógeno/metabolismo , Femenino , Xenoinjertos , Humanos , Ratones , Microambiente Tumoral
9.
Br J Cancer ; 124(2): 494-505, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33028955

RESUMEN

BACKGROUND: Glutamine (Gln) is an abundant nutrient used by cancer cells. Breast cancers cells and particularly triple-receptor negative breast cancer (TNBC) are reported to be dependent on Gln to produce the energy required for survival and proliferation. Despite intense research on the role of the intracellular Gln pathway, few reports have focussed on Gln transporters in breast cancer and TNBC. METHODS: The role and localisation of the Gln transporter SLC38A2/SNAT2 in response to Gln deprivation or pharmacological stresses was examined in a panel of breast cancer cell lines. Subsequently, the effect of SLC38A2 knockdown in Gln-sensitive cell lines was analysed. The prognostic value of SLC38A2 in a cohort of breast cancer was determined by immunohistochemistry. RESULTS: SLC38A2 was identified as a strongly expressed amino acid transporter in six breast cancer cell lines. We confirmed an autophagic route of degradation for SLC38A2. SLC38A2 knockdown decreased Gln consumption, inhibited cell growth, induced autophagy and led to ROS production in a subgroup of Gln-sensitive cell lines. High expression of SLC38A2 protein was associated with poor breast cancer specific survival in a large cohort of patients (p = 0.004), particularly in TNBC (p = 0.02). CONCLUSIONS: These results position SLC38A2 as a selective target for inhibiting growth of Gln-dependent breast cancer cell lines.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Glutamina/metabolismo , Estrés Oxidativo/fisiología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Adulto , Anciano , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Pronóstico
10.
PLoS Genet ; 12(10): e1006366, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27727275

RESUMEN

Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic ß-cells, BMP signalling is also implicated in the control of secretion.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Vesículas Secretoras/genética , Animales , Comunicación Autocrina/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Neuronas/metabolismo , Próstata/crecimiento & desarrollo , Próstata/metabolismo , Vesículas Secretoras/metabolismo , Conducta Sexual Animal/fisiología , Transducción de Señal/genética
11.
Development ; 140(4): 800-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23318638

RESUMEN

Effective wound closure mechanisms are essential for maintenance of epithelial structure and function. The repair of wounded epithelia is primarily driven by the cells bordering the wound, which become motile after wounding, forming dynamic actin protrusions along the wound edge. The molecular mechanisms that trigger wound edge cells to become motile following tissue damage are not well understood. Using wound healing and dorsal closure in Drosophila, we identify a direct molecular link between changes in cell-cell adhesion at epithelial edges and induction of actin protrusion formation. We find that the scaffolding protein Par3/Bazooka and the lipid phosphatase Pten are specifically lost from cell-cell junctions at epithelial edges. This results in a localized accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3), which promotes the formation of actin protrusions along the epithelial edge. Depleting PIP3 results in defective epithelial closure during both dorsal closure and wound healing. These data reveal a novel mechanism that directly couples loss of epithelial integrity to activation of epithelial closure.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Epiteliales/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cicatrización de Heridas/fisiología , Animales , Animales Modificados Genéticamente , Adhesión Celular/fisiología , Drosophila/embriología , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Microscopía Confocal , Fosfatos de Fosfatidilinositol/metabolismo
12.
J Extracell Vesicles ; 13(6): e12465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887984

RESUMEN

Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.


Asunto(s)
Anfirregulina , Cetuximab , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Exosomas , Proteínas de Unión al GTP rab , Humanos , Anfirregulina/metabolismo , Cetuximab/farmacología , Exosomas/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al GTP rab/metabolismo , Receptores ErbB/metabolismo , Células HCT116 , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Estrés Fisiológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/efectos de los fármacos
13.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326288

RESUMEN

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Asunto(s)
Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Fenotipo
14.
J Extracell Vesicles ; 12(3): e12311, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36872252

RESUMEN

Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Endosomas , Transporte Biológico , Complejos de Clasificación Endosomal Requeridos para el Transporte
15.
Nat Commun ; 12(1): 6666, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795295

RESUMEN

Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain.


Asunto(s)
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/ultraestructura , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Fosfatidilserinas/metabolismo , Unión Proteica , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
16.
J Extracell Vesicles ; 10(14): e12182, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34953156

RESUMEN

The minimal information for studies of extracellular vesicles (EVs, MISEV) is a field-consensus rigour initiative of the International Society for Extracellular Vesicles (ISEV). The last update to MISEV, MISEV2018, was informed by input from more than 400 scientists and made recommendations in the six broad topics of EV nomenclature, sample collection and pre-processing, EV separation and concentration, characterization, functional studies, and reporting requirements/exceptions. To gather opinions on MISEV and ideas for new updates, the ISEV Board of Directors canvassed previous MISEV authors and society members. Here, we share conclusions that are relevant to the ongoing evolution of the MISEV initiative and other ISEV rigour and standardization efforts.


Asunto(s)
Vesículas Extracelulares/metabolismo , Estándares de Referencia , Humanos
17.
Biochem J ; 420(3): 363-72, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19335336

RESUMEN

Mammalian CD98 heterodimeric amino acid transporters consist of a promiscuous single-pass transmembrane glycoprotein, CD98hc (CD98 heavy chain), and one of six multipass transmembrane proteins or 'light chains'. The heterodimeric complexes of CD98hc and the light chains LAT1 (L-type amino acid transporter 1) or LAT2 specifically promote sodium-independent System L exchange of neutral amino acids, including leucine. CD98hc is also implicated in other processes, including cell fusion, cell adhesion and activation of TOR (target of rapamycin) signalling. Surprisingly, recent reports suggested that insects lack a membrane-bound CD98hc, but in the present study we show that Drosophila CG2791 encodes a functional CD98hc orthologue with conservation in intracellular, transmembrane and extracellular domains. We demonstrate by RNA-interference knockdown in Drosophila Schneider cells that CG2791 and two Drosophila homologues of the mammalian CD98 light chains, Mnd (Minidiscs) and JhI-21, are required for normal levels of System L transport. Furthermore, we show that System L activity is increased by methoprene, an analogue of the developmentally regulated endocrine hormone juvenile hormone, an effect that is potentially mediated by elevated Mnd expression. Co-expression of CG2791 and JhI-21, but not CG2791 and Mnd, in Xenopus oocytes mediates System L transport. Finally, mapping of conserved sequences on to the recently determined crystal structure of the human CD98hc extracellular domain highlights two conserved exposed hydrophobic patches at either end of the domain that are potential protein-protein-interaction surfaces. Therefore our results not only show that there is functional conservation of CD98hc System L transporters in flies, but also provide new insights into the structure, functions and regulation of heterodimeric amino acid transporters.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Expresión Génica , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/fisiología , Animales , Transporte Biológico , Línea Celular , Secuencia Conservada , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Evolución Molecular , Femenino , Cadena Pesada de la Proteína-1 Reguladora de Fusión/fisiología , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/genética , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/fisiología , Humanos , Leucina/metabolismo , Datos de Secuencia Molecular , Oocitos/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Xenopus
18.
Curr Biol ; 16(2): 140-9, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16431366

RESUMEN

BACKGROUND: In a specialized epithelial cell such as the Drosophila photoreceptor, a conserved set of proteins is essential for the establishment of polarity, its maintenance, or both--in Drosophila, these proteins include the apical factors Bazooka, D-atypical protein kinase C, and D-Par6 together with D-Ecadherin. However, little is known about the mechanisms by which such apical factors might regulate the differentiation of the apical membrane into functional domains such as an apical-most stack of microvilli or more lateral sub-apical membrane. RESULTS: We show that in photoreceptors Bazooka (D-Par3) recruits the tumor suppressor lipid phosphatase PTEN to developing cell-cell junctions (Zonula Adherens, za). za-localized PTEN controls the spatially restricted accumulation of optimum levels of the lipid PtdIns(3,4,5)P3 within the apical membrane domain. This in turn finely tunes activation of Akt1, a process essential for proper morphogenesis of the light-gathering organelle, consisting of a stack of F-actin rich microvilli within the apical membrane. CONCLUSIONS: Spatially localized PtdIns(3,4,5)P3 mediates directional sensing during neutrophil and Dictyostelium chemotaxis. We conclude that a conserved mechanism also operates during photoreceptor epithelial cell morphogenesis in order to achieve normal differentiation of the apical membrane.


Asunto(s)
Membrana Celular/ultraestructura , Polaridad Celular , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Fosfatos de Fosfatidilinositol/fisiología , Células Fotorreceptoras de Invertebrados/citología , Uniones Adherentes/metabolismo , Animales , Drosophila/citología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Microvellosidades/metabolismo , Modelos Biológicos , Morfogénesis , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/fisiología , Fosfatos de Fosfatidilinositol/análisis , Fosfatos de Fosfatidilinositol/metabolismo , Células Fotorreceptoras de Invertebrados/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo
19.
Biochem Soc Trans ; 37(Pt 1): 213-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143634

RESUMEN

mTOR (mammalian target of rapamycin) is a highly conserved serine/threonine protein kinase that has roles in cell metabolism, cell growth and cell survival. Although it has been known for some years that mTOR acts as a hub for inputs from growth factors (in particular insulin and insulin-like growth factors), nutrients and cellular stresses, some of the mechanisms involved are still poorly understood. Recent work has implicated mTOR in a variety of important human pathologies, including cancer, Type 2 diabetes and neurodegenerative disorders, heightening interest and accelerating progress in dissecting out the control and functions of mTOR.


Asunto(s)
Enfermedad , Proteínas Quinasas/metabolismo , Aminoácidos/metabolismo , Humanos , Especificidad de Órganos , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo
20.
Biochem Soc Trans ; 37(Pt 1): 248-52, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143641

RESUMEN

mTOR (mammalian target of rapamycin) plays a key role in determining how growth factor, nutrient and oxygen levels modulate intracellular events critical for the viability and growth of the cell. This is reflected in the impact of aberrant mTOR signalling on a number of major human diseases and has helped to drive research to understand how TOR (target of rapamycin) is itself regulated. While it is clear that amino acids can affect TOR signalling, how these molecules are sensed by TOR remains controversial, perhaps because cells use different mechanisms as environmental conditions change. Even the question of whether they have an effect inside the cell or at its surface remains unresolved. The present review summarizes current ideas and suggests ways in which some of the models proposed might be unified to produce an amino acid detection system that can adapt to environmental change.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Quinasas/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Alimentos , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA