Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Biol ; 19(1): 8, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33455582

RESUMEN

BACKGROUND: Numerous deep-sea invertebrates, at both hydrothermal vents and methane seeps, have formed symbiotic associations with internal chemosynthetic bacteria in order to harness inorganic energy sources typically unavailable to animals. Despite success in nearly all marine habitats and their well-known associations with photosynthetic symbionts, Cnidaria remain one of the only phyla present in the deep-sea without a clearly documented example of dependence on chemosynthetic symbionts. RESULTS: A new chemosynthetic symbiosis between the sea anemone Ostiactis pearseae and intracellular bacteria was discovered at ~ 3700 m deep hydrothermal vents in the southern Pescadero Basin, Gulf of California. Unlike most sea anemones observed from chemically reduced habitats, this species was observed in and amongst vigorously venting fluids, side-by-side with the chemosynthetic tubeworm Oasisia aff. alvinae. Individuals of O. pearseae displayed carbon, nitrogen, and sulfur tissue isotope values suggestive of a nutritional strategy distinct from the suspension feeding or prey capture conventionally employed by sea anemones. Molecular and microscopic evidence confirmed the presence of intracellular SUP05-related bacteria housed in the tentacle epidermis of O. pearseae specimens collected from 5 hydrothermally active structures within two vent fields ~ 2 km apart. SUP05 bacteria (Thioglobaceae) dominated the O. pearseae bacterial community, but were not recovered from other nearby anemones, and were generally rare in the surrounding water. Further, the specific Ostiactis-associated SUP05 phylotypes were not detected in the environment, indicating a specific association. Two unusual candidate bacterial phyla (the OD1 and BD1-5 groups) appear to associate exclusively with O. pearseae and may play a role in symbiont sulfur cycling. CONCLUSION: The Cnidarian Ostiactis pearseae maintains a physical and nutritional alliance with chemosynthetic bacteria. The mixotrophic nature of this symbiosis is consistent with what is known about other cnidarians and the SUP05 bacterial group, in that they both form dynamic relationships to succeed in nature. The advantages gained by appropriating metabolic and structural resources from each other presumably contribute to their striking abundance in the Pescadero Basin, at the deepest known hydrothermal vents in the Pacific Ocean.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Respiraderos Hidrotermales , Anémonas de Mar/metabolismo , Simbiosis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , México , Océano Pacífico
2.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28724734

RESUMEN

Hydrothermal vent communities are distributed along mid-ocean spreading ridges as isolated patches. While distance is a key factor influencing connectivity among sites, habitat characteristics are also critical. The Pescadero Basin (PB) and Alarcón Rise (AR) vent fields, recently discovered in the southern Gulf of California, are bounded by previously known vent localities (e.g. Guaymas Basin and 21° N East Pacific Rise); yet, the newly discovered vents differ markedly in substrata and vent fluid attributes. Out of 116 macrofaunal species observed or collected, only three species are shared among all four vent fields, while 73 occur at only one locality. Foundation species at basalt-hosted sulfide chimneys on the AR differ from the functional equivalents inhabiting sediment-hosted carbonate chimneys in the PB, only 75 km away. The dominant species of symbiont-hosting tubeworms and clams, and peripheral suspension-feeding taxa, differ between the sites. Notably, the PB vents host a limited and specialized fauna in which 17 of 26 species are unknown at other regional vents and many are new species. Rare sightings and captured larvae of the 'missing' species revealed that dispersal limitation is not responsible for differences in community composition at the neighbouring vent localities. Instead, larval recruitment-limiting habitat suitability probably favours species differentially. As scenarios develop to design conservation strategies around mining of seafloor sulfide deposits, these results illustrate that models encompassing habitat characteristics are needed to predict metacommunity structure.


Asunto(s)
Biodiversidad , Ecosistema , Respiraderos Hidrotermales , Animales , Bivalvos , California , Invertebrados
4.
Mol Ecol ; 23(6): 1457-1472, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23952239

RESUMEN

Recent investigations have demonstrated that unusually 'hairy' yeti crabs within the family Kiwaidae associate with two predominant filamentous bacterial families, the Epsilon and Gammaproteobacteria. These analyses, however, were based on samples collected from a single body region, the setae of pereopods. To more thoroughly investigate the microbiome associated with Kiwa puravida, a yeti crab species from Costa Rica, we utilized barcoded 16S rRNA amplicon pyrosequencing, as well as microscopy and terminal restriction fragment length polymorphism analysis. Results indicate that, indeed, the bacterial community on the pereopods is far less diverse than on the rest of the body (Shannon indices ranged from 1.30-2.02 and 2.22-2.66, respectively). Similarly, the bacterial communities associated with juveniles and adults were more complex than previously recognized, with as many as 46 bacterial families represented. Ontogenetic differences in the microbial community, from egg to juvenile to adult, included a dramatic under-representation of the Helicobacteraceae and higher abundances of both Thiotrichaceae and Methylococcaceae for the eggs, which paralleled patterns observed in another bacteria-crustacean symbiosis. The degree to which abiotic and biotic feedbacks influence the bacterial community on the crabs is still not known, but predictions suggest that both the local environment and host-derived factors influence the establishment and maintenance of microbes associated with the surfaces of aquatic animals.


Asunto(s)
Anomuros/microbiología , Bacterias/clasificación , Microbiota , Filogenia , Animales , Bacterias/genética , Costa Rica , Código de Barras del ADN Taxonómico , Femenino , Hibridación Fluorescente in Situ , Microscopía Electrónica de Transmisión , Óvulo/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
5.
Naturwissenschaften ; 101(5): 397-406, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24682514

RESUMEN

We document a facultative Bartonella-like Rhizobiales bacterium in the giant tropical ant, Paraponera clavata. In a lowland tropical rainforest in Costa Rica, 59 colonies were assayed for the prevalence of the Bartonella-like bacterium (BLB), 14 of which were positive. We addressed three questions: First, how does the prevalence of BLB within colonies vary with environmental conditions? Second, how does diet affect the prevalence of BLB in P. clavata? Third, how does the distribution of BLB among colonies reflect ambient differences in food resources and foraging habits? A variety of environmental variables that may be predictive of the presence of BLB were measured, and diet manipulations were conducted to test whether the prevalence of BLB responded to supplemental carbohydrate or prey. The ambient frequency of BLB is much higher in young secondary forests, but is nearly absent from older secondary forests. The prevalence of BLB inside field colonies increased over the duration of a 2-week carbohydrate supplementation; however, water and prey supplementation did not alter the prevalence of BLB. The diets of the colonies located in young secondary forest, compared to other habitats, have a diet richer in carbohydrates and lower in prey. The abundance of carbohydrate, or the relative lack of N, in a colony's diet influences the occurrence of the BLB microbe in P. clavata. As experimental diet manipulations can affect the facultative presence of an N-cycling microbe, a consistent diet shift in diet may facilitate the emergence of tighter symbioses.


Asunto(s)
Hormigas/microbiología , Dieta , Rhizobiaceae/fisiología , Simbiosis/fisiología , Animales , Carbohidratos de la Dieta/metabolismo , Microbiología Ambiental , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Clima Tropical
6.
iScience ; 27(9): 110674, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39252957

RESUMEN

Sap-sucking insects fail to obtain vitamins, amino acids, and sterols from their plant diet. To compensate, obligate intracellular bacterial symbionts (usually Sulcia and Vidania) provide these missing nutrients. Notably, some planthoppers within the Fulgoromorpha (suborder Auchenorrhyncha) associate with intracellular fungi, which either accompany or replace the anciently associated bacterial partners. Planthopper-symbiont surveys, however, have only been conducted in limited temperate regions, thus necessitating examination of these relationships in the tropics, where insect and fungal diversity is high. Here, five tropical planthopper families host yeast-like endosymbionts related to the parasitic genus Ophiocordyceps. Fungal endosymbiont identity generally corresponded to host family, suggesting possible coevolution. Vertical transmission to offspring was supported by the occurrence of fungal cells in developing eggs. This serves as the most comprehensive tropical planthopper-symbiont survey to date, doubling the roster of known Fulgoromorpha species that host intracellular fungi and further elucidating the remarkable success of this diverse insect group.

7.
Sci Rep ; 14(1): 18108, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103415

RESUMEN

During captivity, round stingrays, Urobatis halleri, became infected with the marine leech Branchellion lobata. When adult leeches were deprived of blood meal, they experienced a rapid decrease in body mass and did not survive beyond 25 days. If kept in aquaria with host rays, B. lobata fed frequently and soon produced cocoons, which were discovered adhered to sand grains. A single leech emerged from each cocoon (at ~ 21 days), and was either preserved for histology or molecular analysis, or monitored for development by introduction to new hosts in aquaria. Over a 74-day observation period, leeches grew from ~ 2 to 8 mm without becoming mature. Newly hatched leeches differed from adults in lacking branchiae and apparent pulsatile vesicles. The microbiome of the hatchlings was dominated by a specific, but undescribed, member of the gammaproteobacteria, also recovered previously from the adult leech microbiome. Raising B. lobata in captivity provided an opportunity to examine their reproductive strategy and early developmental process, adding to our limited knowledge of this common group of parasites.


Asunto(s)
Sanguijuelas , Rajidae , Animales , Sanguijuelas/crecimiento & desarrollo , Sanguijuelas/fisiología , California , Estadios del Ciclo de Vida , Microbiota
8.
J Parasitol ; 109(2): 135-144, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37103004

RESUMEN

Pterobdella occidentalis n. sp. (Hirudinida: Piscicolidae) is described from the longjaw mudsucker, Gillichthys mirabilis Cooper, 1864, and the staghorn sculpin, Leptocottus armatus Girard, 1854, in the eastern Pacific, and the diagnosis of Pterobdella abditovesiculata (Moore, 1952) from the 'o'opu 'akupa, Eleotris sandwicensis Vaillant and Sauvage, 1875, from Hawaii is amended. The morphology of both species conforms with the genus Pterobdella in possessing a spacious coelom, well-developed nephridial system, and 2 pairs of mycetomes. Originally described as Aestabdella abditovesiculata, P. occidentalis (present along the U.S. Pacific Coast), can be distinguished from most congeners by its metameric pigmentation pattern and diffuse pigmentation on the caudal sucker. Based on mitochondrial gene sequences, including cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit I (ND1), P. occidentalis forms a distinct polyphyletic clade with Pterobdella leiostomi from the western Atlantic. Based on COI, ND1, and the 18S rRNA genes, other leech species most closely related to P. occidentalis include Pterobdella arugamensis from Iran, Malaysia, and possibly Borneo, which likely represent distinct species, and Pterobdella abditovesiculata from Hawaii, one of only a few endemic fish parasites in Hawaii. Like P. abditovesiculata, P. arugamensis, and Petrobdella amara, P. occidentalis is often found in estuarine environments, frequently infecting hosts adapted to a wide range of salinity, temperature, and oxygen. The physiological plasticity of P. occidentalis and the longjaw mudsucker host, and the ease of raising P. occidentalis in the lab, make it an excellent candidate for the study of leech physiology, behavior, and possible bacterial symbionts.


Asunto(s)
Sanguijuelas , Mirabilis , Perciformes , Animales , Peces , Oxígeno , Sanguijuelas/genética
9.
mBio ; 14(4): e0314022, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37382438

RESUMEN

Osedax, the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, which help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-yr study, we reveal a dynamic, yet persistent, shift of Campylobacterales integrated into the epidermis of Osedax, which change over time as the whale carcass degrades on the sea floor. The Campylobacterales associated with seven species of Osedax, which comprise 67% of the bacterial community on the trunk, appear initially dominated by the genus Arcobacter (at early time points <24 mo), the Sulfurospirillum at intermediate stages (~50 mo), and the Sulfurimonas at later stages (>140 mo) of whale carcass decomposition. Metagenome analysis of the epibiont metabolic capabilities suggests potential for a transition from heterotrophy to autotrophy and differences in their capacity to metabolize oxygen, carbon, nitrogen, and sulfur. Compared to free-living relatives, the Osedax epibiont genomes were enriched in transposable elements, implicating genetic exchange on the host surface, and contained numerous secretions systems with eukaryotic-like protein (ELP) domains, suggesting a long evolutionary history with these enigmatic, yet widely distributed deep-sea worms. IMPORTANCE Symbiotic associations are widespread in nature and we can expect to find them in every type of ecological niche. In the last twenty years, the myriad of functions, interactions and species comprising microbe-host associations has fueled a surge of interest and appreciation for symbiosis. During this 14-year study, we reveal a dynamic population of bacterial epibionts, integrated into the epidermis of 7 species of a deep-sea worm group that feeds exclusively on the remains of marine mammals. The bacterial genomes provide clues of a long evolutionary history with these enigmatic worms. On the host surface, they exchange genes and appear to undergo ecological succession, as the whale carcass habitat degrades over time, similar to what is observed for some free-living communities. These, and other annelid worms are important keystone species for diverse deep-sea environments, yet the role of attached external bacteria in supporting host health has received relatively little attention.

10.
Nat Commun ; 14(1): 2814, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198188

RESUMEN

Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.


Asunto(s)
Anélidos , Poliquetos , Animales , Simbiosis/genética , Anélidos/genética , Poliquetos/genética , Poliquetos/metabolismo , Genoma/genética , Genómica , Filogenia
11.
Proc Biol Sci ; 279(1738): 2580-8, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398162

RESUMEN

Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota.


Asunto(s)
Ecosistema , Respiraderos Hidrotermales , Metano/metabolismo , Agua de Mar , Animales , Bivalvos , Costa Rica , Gastrópodos , Plantas
12.
Front Microbiol ; 13: 1113237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713196

RESUMEN

Persistent bacterial presence is believed to play an important role in host adaptation to specific niches that would otherwise be unavailable, including the exclusive consumption of blood by invertebrate parasites. Nearly all blood-feeding animals examined so far host internal bacterial symbionts that aid in some essential aspect of their nutrition. Obligate blood-feeding (OBF) invertebrates exist in the oceans, yet symbiotic associations between them and beneficial bacteria have not yet been explored. This study describes the microbiome of 6 phylogenetically-diverse species of marine obligate blood-feeders, including leeches (both fish and elasmobranch specialists; e.g., Pterobdella, Ostreobdella, and Branchellion), isopods (e.g., Elthusa and Nerocila), and a copepod (e.g., Lernanthropus). Amplicon sequencing analysis revealed the blood-feeding invertebrate microbiomes to be low in diversity, compared to host fish skin surfaces, seawater, and non-blood-feeding relatives, and dominated by only a few bacterial genera, including Vibrio (100% prevalence and comprising 39%-81% of the average total recovered 16S rRNA gene sequences per OBF taxa). Vibrio cells were localized to the digestive lumen in and among the blood meal for all taxa examined via fluorescence microscopy. For Elthusa and Branchellion, Vibrio cells also appeared intracellularly within possible hemocytes, suggesting an interaction with the immune system. Additionally, Vibrio cultivated from four of the obligate blood-feeding marine taxa matched the dominant amplicons recovered, and all but one was able to effectively lyse vertebrate blood cells. Bacteria from 2 additional phyla and 3 families were also regularly recovered, albeit in much lower abundances, including members of the Oceanospirillaceae, Flavobacteriacea, Porticoccaceae, and unidentified members of the gamma-and betaproteobacteria, depending on the invertebrate host. For the leech Pterobdella, the Oceanospirillaceae were also detected in the esophageal diverticula. For two crustacean taxa, Elthusa and Lernanthropus, the microbial communities associated with brooded eggs were very similar to the adults, indicating possible direct transmission. Virtually nothing is known about the influence of internal bacteria on the success of marine blood-feeders, but this evidence suggests their regular presence in marine parasites from several prominent groups.

13.
Biol Lett ; 7(5): 736-9, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-21490008

RESUMEN

Marine annelid worms of the genus Osedax exploit sunken vertebrate bones for food. To date, the named species occur on whale or other mammalian bones, and it is argued that Osedax is a whale-fall specialist. To assess whether extant Osedax species could obtain nutrition from non-mammalian resources, we deployed teleost bones and calcified shark cartilage at approximately 1000 m depth for five months. Although the evidence from shark cartilage was inconclusive, the teleost bones hosted three species of Osedax, each of which also lives off whalebones. This suggests that rather than being a whale-fall specialist, Osedax has exploited and continues to exploit a variety of food sources. The ability of Osedax to colonize and to grow on fishbone lends credibility to a hypothesis that it might have split from its siboglinid relatives to assume the bone-eating lifestyle during the Cretaceous, well before the origin of marine mammals.


Asunto(s)
Huesos , Conducta Alimentaria , Peces , Poliquetos/fisiología , Animales , Femenino , Masculino
14.
Microb Ecol ; 61(3): 529-42, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21174086

RESUMEN

Tank-forming bromeliads, suspended in the rainforest canopy, possess foliage arranged in compact rosettes capable of long-term retention of rainwater. This large and unique aquatic habitat is inhabited by microorganisms involved in the important decomposition of impounded material. Moreover, these communities are likely influenced by environmental factors such as pH, oxygen, and light. Bacterial community composition and diversity was determined for the tanks of several bromeliad species (Aechmea and Werauhia) from northern Costa Rica, which span a range of parameters, including tank morphology and pH. These were compared with a nearby forest soil sample, an artificial tank (amber bottle), and a commercially available species (Aechmea). Bacterial community diversity, as measured by 16S rRNA analysis and tRFLP, showed a significant positive correlation with tank pH. A majority of 16S rRNA bacterial phylotypes found in association with acidic bromeliad tanks of pH < 5.1 were affiliated with the Alphaproteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes, and were similar to those found in acidic peat bogs, yet distinct from the underlying soil community. In contrast, bromeliads with tank pH > 5.3, including the commercial bromeliad with the highest pH (6.7), were dominated by Betaproteobacteria, Firmicutes, and Bacteroidetes. To empirically determine the effect of pH on bacterial community, the tank pH of a specimen of Aechmea was depressed, in the field, from 6.5 to 4.5, for 62 days. The resulting community changed predictably with decreased abundance of Betaproteobacteria and Firmicutes and a concomitant increase in Alphaproteobacteria and Acidobacteria. Collectively, these results suggest that bromeliad tanks provide important habitats for a diverse microbial community, distinct from the surrounding environment, which are influenced greatly by acid-base conditions. Additionally, total organic carbon (∼46%) and nitrogen (∼2%) of bromeliad-impounded sediment was elevated relative to soil and gene surveys confirmed the presence of both chitinases and nitrogenases, suggesting that bromeliad tanks may provide important habitats for microbes involved in the biological cycling of carbon and nitrogen in tropical forests.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Bromeliaceae/microbiología , Árboles/microbiología , Bacterias/genética , Bromeliaceae/química , Carbono/análisis , Costa Rica , ADN Bacteriano/genética , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/análisis , Clima Tropical
15.
Proc Natl Acad Sci U S A ; 105(19): 7052-7, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18467493

RESUMEN

Microorganisms play a fundamental role in the cycling of nutrients and energy on our planet. A common strategy for many microorganisms mediating biogeochemical cycles in anoxic environments is syntrophy, frequently necessitating close spatial proximity between microbial partners. We are only now beginning to fully appreciate the diversity and pervasiveness of microbial partnerships in nature, the majority of which cannot be replicated in the laboratory. One notable example of such cooperation is the interspecies association between anaerobic methane oxidizing archaea (ANME) and sulfate-reducing bacteria. These consortia are globally distributed in the environment and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. The interdependence of these currently uncultured microbes renders them difficult to study, and our knowledge of their physiological capabilities in nature is limited. Here, we have developed a method to capture select microorganisms directly from the environment, using combined fluorescence in situ hybridization and immunomagnetic cell capture. We used this method to purify syntrophic anaerobic methane oxidizing ANME-2c archaea and physically associated microorganisms directly from deep-sea marine sediment. Metagenomics, PCR, and microscopy of these purified consortia revealed unexpected diversity of associated bacteria, including Betaproteobacteria and a second sulfate-reducing Deltaproteobacterial partner. The detection of nitrogenase genes within the metagenome and subsequent demonstration of (15)N(2) incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen inputs by these syntrophic assemblages.


Asunto(s)
Archaea/citología , Archaea/genética , Genómica/métodos , Sedimentos Geológicos/microbiología , Metano/metabolismo , Agua de Mar/microbiología , Simbiosis , Anaerobiosis , Archaea/aislamiento & purificación , Bacterias/citología , Carbono , Separación Inmunomagnética , Hibridación Fluorescente in Situ , Marcaje Isotópico , Magnetismo , Datos de Secuencia Molecular , Nitrógeno , Fijación del Nitrógeno , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/análisis , Reproducibilidad de los Resultados
16.
Environ Microbiol Rep ; 13(2): 104-111, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33196140

RESUMEN

Relationships fueled by sulfide between deep-sea invertebrates and bacterial symbionts are well known, yet the diverse overlapping factors influencing symbiont specificity are complex. For animals that obtain their symbionts from the environment, both host identity and geographic location can impact the ultimate symbiont partner. Bacterial symbionts were analysed for three co-occurring species each of Bathymodiolus mussels and vestimentiferan tubeworms, from three deep methane seeps off the west coast of Costa Rica. The bacterial internal transcribed spacer gene was analysed via direct and barcoded amplicon sequencing to reveal fine-scale symbiont diversity. Each of the three mussel species (B. earlougheri, B. billschneideri and B. nancyschneideri) hosted genetically distinct thiotrophic endosymbionts, despite living nearly side-by-side in their habitat, suggesting that host identity is crucial in driving symbiont specificity. The dominant thiotrophic symbiont of co-occurring tubeworms Escarpia spicata and Lamellibrachia (L. barhami and L. donwalshi), on the other hand, was identical regardless of host species or sample location, suggesting lack of influence by either factor on symbiont selectivity in this group of animals. These findings highlight the specific, yet distinct, influences on the environmental acquisition of symbionts in two foundational invertebrates with similar lifestyles, and provide a rapid, precise method of examining symbiont identities.


Asunto(s)
Bivalvos , Poliquetos , Animales , Bacterias/genética , Bivalvos/microbiología , Metano , Poliquetos/microbiología , Simbiosis
17.
Environ Microbiol ; 12(2): 344-63, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19799620

RESUMEN

The deep sea is a unique and extreme environment characterized by low concentrations of highly recalcitrant carbon. As a consequence, large organic inputs have potential to cause significant perturbation. To assess the impact of organic enrichment on deep sea microbial communities, we investigated bacterial diversity in sediments underlying two whale falls at 1820 and 2893 m depth in Monterey Canyon, as compared with surrounding reference sediment 10-20 m away. Bacteroidetes, Epsilonproteobacteria and Firmicutes were recovered primarily from whale fall-associated sediments, while Gammaproteobacteria and Planctomycetes were found primarily within reference sediments. Abundant Deltaproteobacteria were recovered from both sediment types, but the Desulfobacteraceae and Desulfobulbaceae families were observed primarily beneath the whale falls. UniFrac analysis revealed that bacterial communities from the two whale falls (approximately 30 km apart) clustered to the exclusion of corresponding reference sediment communities, suggesting that deposition of whale fall biomass is more influential on deep sea microbial communities than specific seafloor location. The bacterial population at whale-1820 at 7 months post deposition was less diverse than reference sediments, with Delta- and Epsilonproteobacteria and Bacteroidetes making up 89% of the community. At 70 months, bacterial diversity in reference sediments near whale-2893 had decreased as well. Over this time, there was a convergence of each community's membership at the phyla level, although lower-taxonomic-level composition remained distinct. Long-term impact of organic carbon loading from the whale falls was also evident by elevated total organic carbon and enhanced proteolytic activity for at least 17-70 months. The response of the sedimentary microbial community to large pulses of organic carbon is complex, likely affected by increased animal bioturbation, and may be sustained over time periods that span years to perhaps even decades.


Asunto(s)
Bacterias/clasificación , Microbiología del Agua , Bacterias/enzimología , Bacterias/genética , Biomasa , Carbono/metabolismo , Océanos y Mares , Filogenia
18.
Sci Adv ; 6(14): eaay8562, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32284974

RESUMEN

Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ13C of -44 to -58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150-million year-old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation.


Asunto(s)
Anélidos/microbiología , Organismos Acuáticos/microbiología , Bacterias , Ecosistema , Agua de Mar/microbiología , Simbiosis , Animales , Bacterias/clasificación , Bacterias/citología , Bacterias/metabolismo , Bacterias/ultraestructura , Metano/metabolismo , ARN Ribosómico 16S
19.
Environ Microbiol ; 10(10): 2623-34, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18564185

RESUMEN

The Yeti crab, Kiwa hirsuta Macpherson et al., is the single known species in a recently discovered crab family Kiwaidae (Decapoda: Galatheoidea) from deep-sea hydrothermal vents. Its chelipeds, walking legs and the ventral surface of its cephalothorax are covered with dense setae that, in turn, are covered with clusters of filamentous bacteria, making the crab appear extraordinarily 'hairy'. Electron microscopy revealed dense bacterial clusters attached to the chitinous outer layer of the setae. Molecular phylogenetic analyses revealed the setae-associated bacteria to be dominated by epsilon-Proteobacteria ( approximately 56% of the recovered ribotypes), gamma-Proteobacteria ( approximately 25%) and Bacteroidetes ( approximately 10%). Fluorescence in situ microscopy confirmed the attachment of filamentous epsilon-Proteobacteria on setae, but no specialized morphological structures appeared to exist for bacterial attachment. Key enzymes involved in the reductive tricarboxylic acid cycle (ATP-dependent citrate lyase) and sulfite oxidation or dissimilatory sulfate reduction (bidirectional APS reductase) were detected. Consequently, the potential for carbon fixation and cycling of reduced and oxidized sulfur appear to exist in the dense microflora that grows on the crab's setae.


Asunto(s)
Anomuros/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Estructuras Animales/microbiología , Animales , Bacterias/genética , Ciclo del Ácido Cítrico/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Manantiales de Aguas Termales , Microscopía Electrónica , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Agua de Mar , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
20.
Zootaxa ; 4377(4): 451-489, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29690036

RESUMEN

We incorporate DNA sequences from a comprehensive sampling of taxa to provide an updated phylogeny of Osedax and discuss the remarkable diversity of this clade of siboglinids. We formally describe 14 new species of Osedax from Monterey Bay, California, USA, raising the total number of properly named Osedax species to 25. These new species had formerly been recognized by informal names in various publications, and on GenBank. The descriptions document the occurrence of dwarf males in five of the new species. The distribution for the 19 species of Osedax known to occur in Monterey Bay across depths from 385 to 2898 meters and various bone substrates is documented. The exploitation of extant bird and marine turtle bones by Osedax is reported for the first time.


Asunto(s)
Anélidos , Animales , Huesos , California , Masculino , Filogenia , Poliquetos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA