Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361684

RESUMEN

The low response rates associated with immune checkpoint inhibitor (ICI) use has led to a surge in research investigating adjuvant combination strategies in an attempt to enhance efficacy. Repurposing existing drugs as adjuvants accelerates the pace of cancer immune therapy research; however, many combinations exacerbate the immunogenic response elicited by ICIs and can lead to adverse immune-related events. Metformin, a widely used type 2 diabetes drug is an ideal candidate to repurpose as it has a good safety profile and studies suggest that metformin can modulate the tumour microenvironment, promoting a favourable environment for T cell activation but has no direct action on T cell activation on its own. In the current study we used PET imaging with [18F]AlF-NOTA-KCNA3P, a radiopharmaceutical specifically targeting KV1.3 the potassium channel over-expressed on active effector memory T-cells, to determine whether combining PD1 with metformin leads to an enhanced immunological memory response in a preclinical colorectal cancer model. Flow cytometry was used to assess which immune cell populations infiltrate the tumours in response to the treatment combination. Imaging with [18F]AlF-NOTA-KCNA3P demonstrated that adjuvant metformin significantly improved anti-PD1 efficacy and led to a robust anti-tumour immunological memory response in a syngeneic colon cancer model through changes in tumour infiltrating effector memory T-cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Células T de Memoria , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Adyuvantes Inmunológicos/uso terapéutico
2.
Infect Immun ; 89(10): e0002421, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34251290

RESUMEN

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a severe complication of malaria that occurs despite effective antimalarial treatment. Currently, noninvasive imaging procedures such as chest X-rays are used to assess edema in established MA-ARDS, but earlier detection methods are needed to reduce morbidity and mortality. The early stages of MA-ARDS are characterized by the infiltration of leukocytes, in particular monocytes/macrophages; thus, monitoring of immune infiltrates may provide a useful indicator of early pathology. In this study, Plasmodium berghei ANKA-infected C57BL/6 mice, a rodent model of MA-ARDS, were longitudinally imaged using the 18-kDa translocator protein (TSPO) imaging agent [18F]FEPPA as a marker of macrophage accumulation during the development of pathology and in response to combined artesunate and chloroquine diphosphate (ART+CQ) therapy. [18F]FEPPA uptake was compared to blood parasitemia levels and to levels of pulmonary immune cell infiltrates by using flow cytometry. Infected animals showed rapid increases in lung retention of [18F]FEPPA, correlating well with increases in blood parasitemia and pulmonary accumulation of interstitial inflammatory macrophages and major histocompatibility complex class II (MHC-II)-positive alveolar macrophages. Treatment with ART+CQ abrogated this increase in parasitemia and significantly reduced both lung uptake of [18F]FEPPA and levels of macrophage infiltrates. We conclude that retention of [18F]FEPPA in the lungs is well correlated with changes in blood parasitemia and levels of lung-associated macrophages during disease progression and in response to ART+CQ therapy. With further development, TSPO biomarkers may have the potential to accurately assess the early onset of MA-ARDS.


Asunto(s)
Biomarcadores/metabolismo , Pulmón/metabolismo , Malaria/metabolismo , Neumonía/metabolismo , Animales , Modelos Animales de Enfermedad , Leucocitos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Plasmodium berghei/patogenicidad , Tomografía de Emisión de Positrones/métodos , Síndrome de Dificultad Respiratoria/metabolismo
3.
Mol Imaging ; 2021: 9305277, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35936114

RESUMEN

Hepatocellular carcinoma (HCC) is a notoriously difficult cancer to treat. The recent development of immune checkpoint inhibitors has revolutionised HCC therapy; however, successful response is only observed in a small percentage of patients. Biomarkers typically used to predict treatment response in other tumour types are ineffective in HCC, which arises in an immune-suppressive environment. However, imaging markers that measure changes in tumour infiltrating immune cells may supply information that can be used to determine which patients are responding to therapy posttreatment. We have evaluated [18F]AlF-mNOTA-GZP, a radiolabeled peptide targeting granzyme B, to stratify response to ICIs in a HEPA 1-tumours, a syngeneic model of HCC. Posttherapy, in vivo tumour retention of [18F]AlF-mNOTA-GZP was correlated to changes in tumour volume and tumour-infiltrating immune cells. [18F]AlF-mNOTA-GZP successfully stratified response to immune checkpoint inhibition in the syngeneic HEPA 1-6 model. FACS indicated significant changes in the immune environment including a decrease in immune suppressive CD4+ T regulatory cells and increases in tumour-associated GZB+ NK+ cells, which correlated well with tumour radiopharmaceutical uptake. While the immune response to ICI therapies differs in HCC compared to many other cancers, [18F]AlF-mNOTA-GZP retention is able to stratify response to ICI therapy associated with tumour infiltrating GZB+ NK+ cells in this complex tumour microenvironment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Granzimas/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Tomografía de Emisión de Positrones , Microambiente Tumoral
4.
Molecules ; 26(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808813

RESUMEN

Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.


Asunto(s)
Neoplasias del Colon , Interleucina-2 , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Experimentales , Tomografía de Emisión de Positrones , Radiofármacos , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Interleucina-2/química , Interleucina-2/farmacología , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Radiofármacos/química , Radiofármacos/farmacología , Linfocitos T/patología , Microambiente Tumoral/efectos de los fármacos
5.
Hum Mol Genet ; 27(16): 2775-2788, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29741626

RESUMEN

Winchester syndrome (WS, MIM #277950) is an extremely rare autosomal recessive skeletal dysplasia characterized by progressive joint destruction and osteolysis. To date, only one missense mutation in MMP14, encoding the membrane-bound matrix metalloprotease 14, has been reported in WS patients. Here, we report a novel hypomorphic MMP14 p.Arg111His (R111H) allele, associated with a mitigated form of WS. Functional analysis demonstrated that this mutation, in contrast to previously reported human and murine MMP14 mutations, does not affect MMP14's transport to the cell membrane. Instead, it partially impairs MMP14's proteolytic activity. This residual activity likely accounts for the mitigated phenotype observed in our patients. Based on our observations as well as previously published data, we hypothesize that MMP14's catalytic activity is the prime determinant of disease severity. Given the limitations of our in vitro assays in addressing the consequences of MMP14 dysfunction, we generated a novel mmp14a/b knockout zebrafish model. The fish accurately reflected key aspects of the WS phenotype including craniofacial malformations, kyphosis, short-stature and reduced bone density owing to defective collagen remodeling. Notably, the zebrafish model will be a valuable tool for developing novel therapeutic approaches to a devastating bone disorder.


Asunto(s)
Anomalías Múltiples/genética , Contractura/genética , Opacidad de la Córnea/genética , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/genética , Metaloproteinasa 14 de la Matriz/genética , Osteólisis/genética , Osteoporosis/genética , Anomalías Múltiples/fisiopatología , Alelos , Animales , Dominio Catalítico/genética , Contractura/fisiopatología , Opacidad de la Córnea/fisiopatología , Anomalías Craneofaciales/fisiopatología , Técnicas de Inactivación de Genes , Trastornos del Crecimiento/fisiopatología , Humanos , Ratones , Osteólisis/fisiopatología , Osteoporosis/fisiopatología , Fenotipo , Pez Cebra
6.
Cytotherapy ; 21(6): 631-642, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975604

RESUMEN

In the current emerging trend of using human mesenchymal stromal cell (MSCs) for cell therapy, large quantities of cells are needed for clinical testing. Current methods of culturing cells, using tissue culture flasks or cell multilayer vessels, are proving to be ineffective in terms of cost, space and manpower. Therefore, alternatives such as large-scale industrialized production of MSCs in stirred tank bioreactors using microcarriers (MCs) are needed. Moreover, the development of biodegradable MCs for MSC expansion can streamline the bioprocess by eliminating the need for enzymatic cell harvesting and scaffold seeding for bone-healing therapies. Our previous studies described a process of making regulated density (1.06 g/cm3) porous polycaprolactone biodegradable MCs Light Polycarprolactone (LPCL) (MCs), which were used for expanding MSCs from various sources in stirred suspension culture. Here, we use human early MSCs (heMSCs) expanded on LPCL MCs for evaluation of their osteogenic differentiation potential in vitro as well as their use in vivo calvarial defect treatment in a rat model. In summary, (i) in vitro data show that LPCL MCs can be used to efficiently expand heMSCs in stirred cultures while maintaining surface marker expression; (ii) LPCL MCs can be used as scaffolds for cell transfer for transplantation in vivo; (iii) 50% sub-confluency, mid-logarithmic phase, on LPCL MCs (50% confluent) exhibited higher secretion levels of six cytokines (interleukin [IL]-6, IL-8, Vascular endothelial growth factor (VEGF), Monocyte Chemoattractant Protein-1 (MCP-1), growth-regulated oncogene-α (GRO-α) and stromal cell-derived factor-1α (SDF-1α)) as compared with 100% confluent, stationary phase cultures (100% confluent); (iv) these 50% confluent cultures demonstrated better in vitro osteogenic differentiation capacity as compared with 100% confluent cultures (higher levels of calcium deposition and at earlier stage); the improved bone differentiation capacity of these 50% confluent cultures was also demonstrated at the molecular level by higher expression of early osteoblast genes Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALP), collagen type I, osterix and osteocalcin); and (v) in vivo implantation of biodegradable LPCL MCs covered with 50% heMSCs into rats with calvarial defect demonstrated significantly better bone formation as compared with heMSCs obtained from monolayer cultures (5.1 ± 1.6 mm3 versus 1.3 ± 0.7 mm3). Moreover, the LPCL MCs covered with 50% heMSCs supported better in vivo bone formation compared with 100% confluent culture (2.1 ± 1.3 mm3). Taken together, our study highlights the potential of implanting 50% confluent MSCs propagated on LPCL MCs as optimal for bone regeneration. This methodology allows for the production of large numbers of MSCs in a three-dimensional (3D) stirred reactor, while supporting improved bone healing and eliminating the need for a 3D matrix support scaffold, as traditionally used in bone-healing treatments.


Asunto(s)
Materiales Biocompatibles/química , Regeneración Ósea/fisiología , Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Animales , Reactores Biológicos , Recuento de Células , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Citocinas/metabolismo , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Poliésteres/química , Ratas Desnudas , Cráneo
7.
J Labelled Comp Radiopharm ; 62(9): 596-603, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31132309

RESUMEN

Specific mutations significantly affect response to epidermal growth factor tyrosine kinase inhibitor (EGFR-TKI) treatment in lung cancer patients. Identifying patients with these mutations remains a major clinical challenge. EGFR T790M mutation, which conveys resistance to in the present study, [18 F]FEWZ was assessed in vitro to determine efficacy relative to the starting compound and in vivo to measure the biodistribution and specificity of binding to EGFR wild-type, L858R and T790M bearing tumours. [18 F]FEWZ is the first evidence of a radiolabeled third generation anilinopyrimidine-derived tyrosine kinase inhibitor targeting T790M mutation bearing tumours in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/diagnóstico por imagen , Mutación , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Receptores ErbB/antagonistas & inhibidores , Marcaje Isotópico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Distribución Tisular
8.
J Lipid Res ; 59(6): 1071-1078, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654114

RESUMEN

The discovery that white adipocytes can undergo a browning process to become metabolically active beige cells has attracted significant interest in the fight against obesity. However, the study of adipose browning has been impeded by a lack of imaging tools that allow longitudinal and noninvasive monitoring of this process in vivo. Here, we report a preclinical imaging approach to detect development of beige adipocytes during adrenergic stimulation. In this approach, we expressed near-infrared fluorescent protein, iRFP720, driven under an uncoupling protein-1 (Ucp1) promoter in mice by viral transduction, and used multispectral optoacoustic imaging technology with ultrasound tomography (MSOT-US) to assess adipose beiging during adrenergic stimulation. We observed increased photoacoustic signal at 720 nm, coupled with attenuated lipid signals in stimulated animals. As a proof of concept, we validated our approach against hybrid positron emission tomography combined with magnetic resonance (PET/MR) imaging modality, and quantified the extent of adipose browning by MRI-guided segmentation of 2-deoxy-2-18F-fluoro-d-glucose uptake signals. The browning extent detected by MSOT-US and PET/MR are well correlated with Ucp1 induction. Taken together, these systems offer great opportunities for preclinical screening aimed at identifying compounds that promote adipose browning and translation of these discoveries into clinical studies of humans.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Imagen Multimodal , Células 3T3-L1 , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Transporte Biológico , Diferenciación Celular , Fluorodesoxiglucosa F18/metabolismo , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Técnicas Fotoacústicas , Tomografía de Emisión de Positrones
9.
Biomacromolecules ; 17(12): 3902-3910, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27936729

RESUMEN

Reversible addition-fragmentation chain transfer (RAFT) polymerization has been employed to synthesize branched block copolymer nanoparticles possessing 1,4,7,10-tetraazacyclododecane-N,N,'N,″N,‴-tetraacetic acid (DO3A) macrocycles within their cores and octreotide (somatostatin mimic) cyclic peptides at their periphery. These polymeric nanoparticles have been chelated with Gd3+ and applied as magnetic resonance imaging (MRI) nanocontrast agents. This nanoparticle system has an r1 relaxivity of 8.3 mM-1 s-1, which is 3 times the r1 of commercial gadolinium-based contrast agents (GBCAs). The in vitro targeted binding efficiency of these nanoparticles shows 5 times greater affinity to somatostatin receptor type 2 (SSTR2) with Ki = 77 pM (compared to somatostatin with Ki = 0.385 nM). We have also evaluated the tumor targeting molecular imaging ability of these branched copolymer nanoparticle in vivo using nude/NCr mice bearing AR42J rat pancreatic tumor (SSTR2 positive) and A549 human lung carcinoma tumor (SSTR2 negative) xenografts.


Asunto(s)
Medios de Contraste/metabolismo , Gadolinio/metabolismo , Neoplasias Pulmonares/diagnóstico , Imagen Molecular/métodos , Nanopartículas/administración & dosificación , Octreótido/metabolismo , Polímeros/química , Animales , Femenino , Fármacos Gastrointestinales/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Nanopartículas/química , Polietilenglicoles/química , Polimerizacion , Ratas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
MAGMA ; 29(2): 277-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26747282

RESUMEN

OBJECTIVE: The aim was to auto-segment and characterize brown adipose, white adipose and muscle tissues in rats by multi-parametric magnetic resonance imaging with validation by histology and UCP1. MATERIALS AND METHODS: Male Wistar rats were randomized into two groups for thermoneutral (n = 8) and cold exposure (n = 8) interventions, and quantitative MRI was performed longitudinally at 7 and 11 weeks. Prior to imaging, rats were maintained at either thermoneutral body temperature (36 ± 0.5 °C), or short term cold exposure (26 ± 0.5 °C). Neural network based automatic segmentation was performed on multi-parametric images including fat fraction, T2 and T2* maps. Isolated tissues were subjected to histology and UCP1 analysis. RESULTS: Multi-parametric approach showed precise delineation of the interscapular brown adipose tissue (iBAT), white adipose tissue (WAT) and muscle regions. Neural network based segmentation results were compared with manually drawn regions of interest, and showed 96.6 and 97.1% accuracy for WAT and BAT respectively. Longitudinal assessment of the iBAT volumes showed a reduction at 11 weeks of age compared to 7 weeks. The cold exposed group showed increased iBAT volume compared to thermoneutral group at both 7 and 11 weeks. Histology and UCP1 expression analysis supported our imaging results. CONCLUSION: Multi-parametric MR based neural network auto-segmentation provides accurate separation of BAT, WAT and muscle tissues in the interscapular region. The cold exposure improves the classification and quantification of heterogeneous BAT.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Frío , Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Escápula/diagnóstico por imagen , Articulación del Hombro/diagnóstico por imagen , Tejido Adiposo Pardo/anatomía & histología , Animales , Masculino , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Escápula/anatomía & histología , Sensibilidad y Especificidad , Articulación del Hombro/anatomía & histología
11.
J Med Chem ; 67(6): 5064-5074, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38480493

RESUMEN

Protein-based 18F-PET tracers offer new possibilities in early disease detection and personalized medicine. Their development relies heavily on the availability and effectiveness of 18F-prosthetic groups. We prepared and evaluated a novel arginine-selective prosthetic group, 4-[18F]fluorophenylglyoxal ([18F]FPG). [18F]FPG was radiosynthesized by a one-pot, two-step procedure with a non-decay-corrected (n.d.c.) isolated radiochemical yield (RCY) of 41 ± 8% (n = 10). [18F]FPG constitutes a generic tool for 18F-labeling of various proteins, including human serum albumin (HSA), ubiquitin, interleukin-2, and interleukin-4 in ∼30-60% n.d.c. isolated RCYs. [18F]FPG conjugation with arginine residues is highly selective, even in the presence of a large excess of lysine, cysteine, and histidine. [18F]FPG protein conjugates are able to preserve the binding affinity of the native proteins while also demonstrating excellent in vivo stability. The [18F]FPG-HSA conjugate has prolonged blood retention, which can be applied as a potential blood pool PET imaging agent. Thus, [18F]FPG is an arginine-selective bioconjugation reagent that can be effectively used for the development of 18F-labeled protein radiopharmaceuticals.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Radioquímica , Albúmina Sérica Humana , Ubiquitina , Radioisótopos de Flúor/química
12.
EMBO Mol Med ; 16(3): 641-663, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332201

RESUMEN

Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Ratones , Linfocitos T/metabolismo , Virus Chikungunya/genética , Macrófagos , Linfocitos T CD4-Positivos
13.
Bioorg Med Chem Lett ; 23(3): 821-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23265897

RESUMEN

Positron emission tomography (PET) using the tracer [(11)C]Flumazenil has shown changes in the distribution and expression of the GABA(A) receptor in a range of neurological conditions and injury states. We aim to develop a fluorine-18 labelled PET agent with comparable properties to [(11)C]Flumazenil. In this study we make a direct comparison between the currently known fluorine-18 labelled GABA(A) radiotracers and novel imidazobenzodiazepine ligands. A focussed library of novel compound was designed and synthesised where the fluorine containing moiety and the position of attachment is varied. The in vitro affinity of twenty-two compounds for the GABA(A) receptor was measured. Compounds containing a fluoroalkyl amide or a longer chain ester group were eliminated due to low potency. The fluorine-18 radiochemistry of one compound from each structural type was assessed to confirm that an automated radiosynthesis in good yield was feasible. Eleven of the novel compounds assessed appeared suitable for in vivo assessment as PET tracers.


Asunto(s)
Radioisótopos de Flúor/química , Radiofármacos/química , Receptores de GABA-A/química , Flumazenil/química , Humanos , Tomografía de Emisión de Positrones , Receptores de GABA-A/metabolismo , Bibliotecas de Moléculas Pequeñas
14.
J Labelled Comp Radiopharm ; 56(2): 42-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24285281

RESUMEN

Integrins have become increasingly attractive targets for molecular imaging of angiogenesis with positron emission tomography or single-photon emission computed tomography, but the reliable production of radiopharmaceuticals remains challenging. A strategy for chemoselective labeling of the integrin ligand-c(RGDyK) peptide-has been developed on the basis of the Cu(I)-catalyzed conjugation reaction. Recently, we reported a nucleophilic detagging and fluorous solid-phase extraction method providing an easy way to implement an approach for obtaining 2-[(18) F]fluoroethyl azide. In this work, we report the practical use of this method for the preparation of the 2-[(18) F]fluoroethyl-triazolyl conjugated c(RGDyK) peptide: [(18) F]FtRGD. The two-step, two-pot synthesis, HPLC purification, and reformulation could be readily performed with a standard nucleophilic radiofluorination synthesizer (GE TRACERlab FXFN ), with minimal modifications. [(18) F]FtRGD was obtained in a solution for injection (>500 MBq/mL) in 10-30% nondecay-corrected radiochemical yield, excellent radiochemical purity (>98%), and 28 ± 13 GBq/µmol specific activity. [(18) F]FtRGD (Ki = 54 ± 14 nM for αV ß3 and 1.7 ± 0.2 nM for αV ß5 ) was evaluated in mice and showed good stability in vivo, good tumor-to-background ratio (1.6 ± 0.3 %ID/g at 1.5 h post-injection in U87-MG tumors), and rapid urinary excretion. Therefore, [(18) F]FtRGD proved valuable for preclinical positron emission tomography imaging of integrin expression.


Asunto(s)
Péptidos Cíclicos/síntesis química , Radiofármacos/síntesis química , Triazoles/síntesis química , Animales , Ligandos , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen , Péptidos Cíclicos/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Distribución Tisular , Triazoles/farmacocinética
15.
Contrast Media Mol Imaging ; 2022: 6113660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694709

RESUMEN

Browning of white adipose tissue (WAT) into beige adipocytes has been proposed as a strategy to tackle the ongoing obesity epidemic. Thermogenic stimuli have been investigated with the aim of converting existing white adipose tissue, primarily used for energy storage, into beige adipocytes capable of dissipating energy; however, evaluation is complicated by the dearth of noninvasive methodologies to quantify de novo beige adipocytes in WAT. Imaging with [18F]FDG is commonly used to measure brown adipose tissue (BAT) and beige adipocytes but the relationship between beige adipocytes, thermogenesis and [18F]FDG uptake is unclear. [18F]BCPP-EF, a tracer for mitochondrial complex-I (MC-I), acts as a marker of oxidative metabolism and may be useful for the detection of newly formed beige adipocytes. Mice received doses of the ß3-adrenergic agonist CL-316,243 subchronically for 7 days to induce formation of beige adipocytes in inguinal white fat. PET imaging was performed longitudinally with both [18F]FDG (a marker of glycolysis) and [18F]BCPP-EF (an MC-I marker) to assess the effect of thermogenic stimulation on uptake in browning inguinal WAT and interscapular BAT. Treatment with CL-316,243 led to significant increases in both [18F]FDG and [18F]BCPP-EF in inguinal WAT. The uptake of [18F]BCPP-EF in inguinal WAT was significantly increased above control levels after 3 days of stimulation, whereas [18F]FDG only showed a significant increase after 7 days. The uptake of [18F]BCPP-EF in newly formed beige adipocytes was blocked by pretreatment with an adrenoceptor antagonist suggesting that beige adipocyte formation may be associated with the activation of MC-I. However, in BAT, uptake of [18F]BCPP-EF was unaffected by ß3-adrenergic stimulation, potentially due to the high expression of MC-I. [18F]BCPP-EF can detect newly formed beige adipocytes in WAT generated after subchronic treatment with the ß3-adrenergic agonist CL-316,243 and displays both higher inguinal WAT uptake and earlier detection than [18F]FDG. The MC-I tracer may be a useful tool in the evaluation of new therapeutic strategies targeting metabolic adipose tissues to tackle obesity and metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo , Fluorodesoxiglucosa F18 , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacología , Animales , Fluorodesoxiglucosa F18/metabolismo , Ratones , Obesidad/diagnóstico por imagen , Tomografía de Emisión de Positrones
16.
Pharmaceutics ; 14(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35057046

RESUMEN

Immune checkpoint inhibitors (ICIs) block checkpoint receptors that tumours use for immune evasion, allowing immune cells to target and destroy cancer cells. Despite rapid advancements in immunotherapy, durable response rates to ICIs remains low. To address this, combination clinical trials are underway assessing whether adjuvants can enhance responsiveness by increasing tumour immunogenicity. CpG-oligodeoxynucleotides (CpG-ODN) are synthetic DNA fragments containing an unmethylated cysteine-guanosine motif that stimulate the innate and adaptive immune systems by engaging Toll-like receptor 9 (TLR9) present on the plasmacytoid dendritic cells (pDCs) and B cells. Here, we have assessed the ability of AlF-mNOTA-GZP, a peptide tracer targeting granzyme B, to serve as a PET imaging biomarker in response to CpG-ODN 1585 in situ vaccine therapy delivered intratumourally (IT) or intraperitoneally (IP) either as monotherapy or in combination with αPD1. [18F]AlF-mNOTA-GZP was able to differentiate treatment responders from non-responders based on tumour uptake. Furthermore, [18F]AlF-mNOTA-GZP showed positive associations with changes in tumour-associated lymphocytes expressing GZB, namely GZB+ CD8+ T cells, and decreases in suppressive F4/80+ cells. [18F]AlF-mNOTA-GZP tumour uptake was mediated by GZB expressing CD8+ cells and successfully stratifies therapy responders from non-responders, potentially acting as a non-invasive biomarker for ICIs and combination therapy evaluation in a clinical setting.

17.
Biomedicines ; 10(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289605

RESUMEN

Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a lasting immune response. Given the potential toxicity of ICI-chemotherapy combinations, identification of biomarkers that accurately predict how individuals respond to specific treatment combinations and whether these responses will be long lasting is of paramount importance. In this study, we explored [18F]AlF-NOTA-KCNA3P, a peptide radiopharmaceutical that targets the Kv1.3 potassium channel overexpressed on T-effector memory (TEM) cells as a PET imaging biomarker for lasting immunological memory response. The first-line colon cancer chemotherapies oxaliplatin and 5-fluorouracil were assessed in a syngeneic colon cancer model, either as monotherapies or in combination with PD1, comparing radiopharmaceutical uptake to memory-associated immune cells in the tumour. [18F]AlF-NOTA-KCNA3P reliably separated tumours with immunological memory responses from non-responding tumours and could be used to measure Kv1.3-expressing TEM cells responsible for durable immunological memory response to combination therapy in vivo.

18.
Cancers (Basel) ; 14(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35267526

RESUMEN

Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet need. Persistent and durable immunological responses are associated with the generation of memory T cells. Effector memory T cells associated with tumour response to immune therapies are characterized by substantial upregulation of the potassium channel Kv1.3 after repeated antigen stimulation. We have developed a new Kv1.3 targeting radiopharmaceutical, [18F]AlF-NOTA-KCNA3P, and evaluated whether it can reliably differentiate tumours successfully responding to immune checkpoint inhibitor (ICI) therapy targeting PD-1 alone or combined with CLTA4. In a syngeneic colon cancer model, we compared tumour retention of [18F]AlF-NOTA-KCNA3P with changes in the tumour immune microenvironment determined by flow cytometry. Imaging with [18F]AlF-NOTA-KCNA3P reliably differentiated tumours responding to ICI therapy from non-responding tumours and was associated with substantial tumour infiltration of T cells, especially Kv1.3-expressing CD8+ effector memory T cells.

19.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107630

RESUMEN

BACKGROUNDCytochrome P450 family 8 subfamily B member 1 (CYP8B1) generates 12α-hydroxylated bile acids (BAs) that are associated with insulin resistance in humans.METHODSTo determine whether reduced CYP8B1 activity improves insulin sensitivity, we sequenced CYP8B1 in individuals without diabetes and identified carriers of complete loss-of-function (CLOF) mutations utilizing functional assays.RESULTSMutation carriers had lower plasma 12α-hydroxylated/non-12α-hydroxylated BA and cholic acid (CA)/chenodeoxycholic acid (CDCA) ratios compared with age-, sex-, and BMI-matched controls. During insulin clamps, hepatic glucose production was suppressed to a similar magnitude by insulin, but glucose infusion rates to maintain euglycemia were higher in mutation carriers, indicating increased peripheral insulin sensitivity. Consistently, a polymorphic CLOF CYP8B1 mutation associated with lower fasting insulin in the AMP-T2D-GENES study. Exposure of primary human muscle cells to mutation-carrier CA/CDCA ratios demonstrated increased FOXO1 activity, and upregulation of both insulin signaling and glucose uptake, which were mediated by increased CDCA. Inhibition of FOXO1 attenuated the CDCA-mediated increase in muscle insulin signaling and glucose uptake. We found that reduced CYP8B1 activity associates with increased insulin sensitivity in humans.CONCLUSIONOur findings suggest that increased circulatory CDCA due to reduced CYP8B1 activity increases skeletal muscle insulin sensitivity, contributing to increased whole-body insulin sensitization.FUNDINGBiomedical Research Council/National Medical Research Council of Singapore.


Asunto(s)
Resistencia a la Insulina , Esteroide 12-alfa-Hidroxilasa , Humanos , Esteroide 12-alfa-Hidroxilasa/genética , Resistencia a la Insulina/genética , Insulina/genética , Haploinsuficiencia , Ácidos y Sales Biliares , Ácido Cólico , Glucosa
20.
Bioorg Med Chem Lett ; 21(23): 6945-9, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22030029

RESUMEN

We improved the specific radioactivity of the apoptosis imaging isatin derivative (18)F-ICMT11. We then evaluated (18)F-ICMT11 in EL4 tumor-bearing mice 24h after treatment with etoposide/cyclophosphamide combination therapy. Dynamic PET imaging demonstrated increased uptake in the drug-treated (0.115±0.011 SUV) compared to the vehicle-treated EL4 tumors (0.083±0.008 SUV). This effect correlated to the observed increases in apoptotic index.


Asunto(s)
Apoptosis , Azidas/síntesis química , Biomarcadores/química , Fluorodesoxiglucosa F18 , Indoles/síntesis química , Linfoma/diagnóstico por imagen , Radiofármacos/síntesis química , Animales , Azidas/química , Diagnóstico por Imagen , Modelos Animales de Enfermedad , Indoles/química , Isatina/química , Ratones , Estructura Molecular , Tomografía de Emisión de Positrones , Radiofármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA