Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 31(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29206323

RESUMEN

High-resolution magic angle spinning (HR MAS) nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study metabolite levels in human breast cancer tissue, assessing, for instance, correlations with prognostic factors, survival outcome or therapeutic response. However, the impact of intratumoral heterogeneity on metabolite levels in breast tumor tissue has not been studied comprehensively. More specifically, when biopsy material is analyzed, it remains questionable whether one biopsy is representative of the entire tumor. Therefore, multi-core sampling (n = 6) of tumor tissue from three patients with breast cancer, followed by lipid (0.9- and 1.3-ppm signals) and metabolite quantification using HR MAS 1 H NMR, was performed, resulting in the quantification of 32 metabolites. The mean relative standard deviation across all metabolites for the six tumor cores sampled from each of the three tumors ranged from 0.48 to 0.74. This was considerably higher when compared with a morphologically more homogeneous tissue type, here represented by murine liver (0.16-0.20). Despite the seemingly high variability observed within the tumor tissue, a random forest classifier trained on the original sample set (training set) was, with one exception, able to correctly predict the tumor identity of an independent series of cores (test set) that were additionally sampled from the same three tumors and analyzed blindly. Moreover, significant differences between the tumors were identified using one-way analysis of variance (ANOVA), indicating that the intertumoral differences for many metabolites were larger than the intratumoral differences for these three tumors. That intertumoral differences, on average, were larger than intratumoral differences was further supported by the analysis of duplicate tissue cores from 15 additional breast tumors. In summary, despite the observed intratumoral variability, the results of the present study suggest that the analysis of one, or a few, replicates per tumor may be acceptable, and supports the feasibility of performing reliable analyses of patient tissue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Metabolómica , Espectroscopía de Protones por Resonancia Magnética/métodos , Análisis de Varianza , Neoplasias de la Mama/patología , Femenino , Humanos , Lípidos/química , Metaboloma , Análisis de Componente Principal
2.
Arch Toxicol ; 92(8): 2549-2561, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29974145

RESUMEN

Tamoxifen (TAM) is commonly used for cell type specific Cre recombinase-induced gene inactivation and in cell fate tracing studies. Inducing a gene knockout by TAM and using non-TAM exposed mice as controls lead to a situation where differences are interpreted as consequences of the gene knockout but in reality result from TAM-induced changes in hepatic metabolism. The degree to which TAM may compromise the interpretation of animal experiments with inducible gene expression still has to be elucidated. Here, we report that TAM strongly attenuates CCl4-induced hepatotoxicity in male C57Bl/6N mice, even after a 10 days TAM exposure-free period. TAM decreased (p < 0.0001) the necrosis index and the level of aspartate- and alanine transaminases in CCl4-treated compared to vehicle-exposed mice. TAM pretreatment also led to the downregulation of CYP2E1 (p = 0.0045) in mouse liver tissue, and lowered its activity in CYP2E1 expressing HepG2 cell line. Furthermore, TAM increased the level of the antioxidant ascorbate, catalase, SOD2, and methionine, as well as phase II metabolizing enzymes GSTM1 and UGT1A1 in CCl4-treated livers. Finally, we found that TAM increased the presence of resident macrophages and recruitment of immune cells in necrotic areas of the livers as indicated by F4/80 and CD45 staining. In conclusion, we reveal that TAM increases liver resistance to CCl4-induced toxicity. This finding is of high relevance for studies using the tamoxifen-inducible expression system particularly if this system is used in combination with hepatotoxic compounds such as CCl4.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Integrasas/genética , Hígado/efectos de los fármacos , Tamoxifeno/farmacología , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocromo P-450 CYP2E1/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/genética , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Xenobióticos/farmacocinética
3.
Anal Bioanal Chem ; 409(9): 2471-2475, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28175935

RESUMEN

We report on the hyphenation of capillary isotachophoresis (cITP) separations with online nuclear magnetic resonance (NMR) detection using a planar microslot waveguide probe design. While cITP is commonly coupled with a solenoidal microcoil NMR probe, the structural information provided is limited by broad resonances and poor spectral resolution due to the magnetic field created by the separation current. The microslot probe design described herein allows the separation capillary to be oriented parallel to the static magnetic field, B 0, eliminating the spectral broadening produced by the secondary magnetic field induced by the separation current. This allows high-resolution nuclear magnetic resonance spectra of the charged analytes to be obtained in online mode, whereas conventional solenoidal capillary NMR designs must resort to the stopped flow mode. The potential of the microslot probe for hyphenated electrophoretic separations is demonstrated by performing cITP focusing and online NMR detection of the 1H NMR spectrum of a system containing spermine and aniline. Graphical Abstract High resolution NMR spectra in flow capillarelectrophoretic separations with microslot NMR probe.

4.
Anal Bioanal Chem ; 409(6): 1591-1606, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896396

RESUMEN

Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.


Asunto(s)
Betaína/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Metaboloma , Espectroscopía de Protones por Resonancia Magnética/métodos , Transcriptoma , Animales , Eliminación de Gen , Ácido Láctico/metabolismo , Leptina/genética , Leptina/metabolismo , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica/métodos , Ratones
5.
Metabolites ; 9(2)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678289

RESUMEN

High resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy is increasingly used for profiling of breast cancer tissue, delivering quantitative information for approximately 40 metabolites. One unique advantage of the method is that it can be used to analyse intact tissue, thereby requiring only minimal sample preparation. Importantly, since the method is non-destructive, it allows further investigations of the same specimen using for instance transcriptomics. Here, we discuss technical aspects critical for a successful analysis - including sample handling, measurement conditions, pulse sequences for one- and two dimensional analysis, and quantification methods - and summarize available studies, with a focus on significant associations of metabolite levels with clinically relevant parameters.

6.
EXCLI J ; 17: 1210-1211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713484
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA