Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 361: 121202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805959

RESUMEN

The inlet of wastewater treatment plants (WWTPs) contains pathogenic microorganisms which during aeration and by mechanical mixing through wind typically aerosolized microbes into ambient air. Bioaerosol emission and its characterization (bacterial and fungal) was investigated considering low-flow and high-flow inlet of wastewater treatment plant. Generation of bioaerosols was found influenced by prevailing seasons while both during summer and winter, fungal concentration (winter: 1406 ± 517; summer: 1743 ± 271 CFU/m3) was higher compared to bacterial concentration (winter: 1077 ± 460; summer: 1415 ± 588 CFU/m3). Bioaerosols produced from WWTPs were predominately in the size range of 2.1-4.7 µm while fraction of fungal bioaerosols were also in ultra-fine range (0.65 µm). Bioaerosols reaching to the air from WWTPs varied seasonally and was calculated by aerosolization ratio. During summer, aerosolization of the bioaerosols was nearly 6 times higher than winter. To constitute potential health effects from the exposure to these bioaerosols, biological characterization, antibiotics resistance and the health survey of the nearby area were also performed. The biological characterization of the bioaerosols samples were done through metagenomic approach using 16s and ITS metagenomic sequencing. Presence of 167 genus of bacteria and 41 genus of fungi has been found. Out of this, bacillus (73%), curtobacterium (21%), pseudomonas, Exiguo bacterium, Acinetobacter bacillaceae, Enterobacteriaceae and Prevotella were the dominant genus (top 10) of bacteria. In case of fungi, xylariales (49%), Hypocreales (19%), Coperinopsis (9%), Alternaria (8%), Fusarium (6%), Biopolaris, Epicoccum, Pleosporaceae, Cladosporium and Nectriaceae were dominant. Antibiotics like, Azithromycin and cefixime were tested on the most dominant bacillus showed resistance on higher concentration of cefixime and lower concentration of azithromycin. Population-based health survey in WWTP nearby areas (50-150 m periphery) found several types of diseases/symptoms including respiratory problem, skin rash/irritation, change in smell and taste, eye irritation within the resident population and workers.


Asunto(s)
Aerosoles , Microbiología del Aire , Aguas Residuales , Aguas Residuales/microbiología , Aerosoles/análisis , Bacterias , Hongos , Monitoreo del Ambiente , Humanos
2.
Sci Rep ; 14(1): 14528, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914618

RESUMEN

Spatial and temporal shifts in rainfall patterns over South Asia and the adjoining Seas during the pre-monsoon season have been observed over the past 2 decades from 2000 to 2019. Aerosol particles suspended above the boundary layer are a contributing factor to these changes. These particles not only alter cloud characteristics, but also diminish the lapse rate, thereby suppressing convective activity, leading to precipitation anomalies. Over the past 2 decades, high-rainfall regions have experienced declining rainfall, while low-rainfall regions have received increased rainfall. Coinciding with notable anomalies in precipitation, contrasting trends in aerosol optical depth, particularly due to absorbing aerosols in the elevated regions of the atmosphere, are seen. Apart from aerosols, several factors are considered that are critical in modifying precipitation patterns over the study region, such as water vapor content, convective processes, and lower-level relative humidity. We observed a potential transport of excess water vapor by ambient circulation from the oceanic regions having reduced rain, such as Bay of Bengal and the Arabian Sea, to higher latitudes enabling precipitation anomaly at distant locations.

3.
Sci Total Environ ; 942: 173780, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38844230

RESUMEN

Arctic regions are extremely sensitive to global warming. Aerosols are one of the most important short-lived climate-forcing agents affecting the Arctic climate. The present study examines the summertime chemical characteristics and potential sources of various organic and inorganic aerosols at a Norwegian Arctic site, Ny-Ålesund (79°N). The results show that organic matter (OM) accounts for 60 % of the total PM10 mass, followed by sulfate (SO42-). Water-soluble organic carbon (WSOC) contributes 62 % of OC. Photochemical processes involving diverse anthropogenic and biogenic precursor compounds are identified as the major sources of WSOC, while water-insoluble organic carbon (WIOC) aerosols are predominantly linked to primary marine emissions. Despite being a remote pristine site, the aerosols show a sign of chemical aging, evidenced by a significant chloride depletion, which was about 82 % on average during the study period. Nitrogen-containing aerosols are likely stemming from migratory seabird colonies and local dust sources around the sampling site. While biogenic, crustal, and sea salt-derived SO42- account for 37%, 8%, and 5% respectively, the remaining 50% is attributed to anthropogenic SO42-. Through chemical tracers, Pearson correlation coefficient matrix, and Hierarchical Cluster Analysis (HCA), the present study identifies soil biota (terrestrial biogenic) and marine emissions, along with their photochemical oxidation processes, as potential sources of Arctic aerosols during summer, while biomass burning and combustion-related sources have a minor contribution. The chemical closure of hygroscopicity highlights that while organics predominantly control aerosol hygroscopicity in the Arctic summer, specific inorganic components like (NH4)2SO4 can significantly increase it on certain days, affecting aerosol-cloud interactions and climate processes over the Arctic during summer. The present study highlights the high abundance of organics and their vital role in the Arctic climate during summer when natural aerosols are conquered.

4.
Sci Total Environ ; 949: 175072, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084378

RESUMEN

Atmospheric aerosols have a serious impact on altering the radiation balance of the vulnerable Himalayan atmosphere. Organic aerosol (OA), one of the least resolved aerosol fractions in the Himalayas, constrain our competence to assess their climate impacts on the region. Here we investigate water-soluble OA molecules in PM10 samples collected from March to May 2019 at Lachung (27.4°N and 88.4°E), a high-altitude location (2700 m a.s.l.) in the eastern Himalaya, to elucidate their origin and formation process. The dominance of oxalic acid (C2) reveals that water-soluble OA in the eastern Himalaya are atmospherically processed. Backward air mass trajectories and mass concentration ratios of organic tracers as well as relationships with inorganic species (K+, SO42-, NH4+) suggest an anthropogenic origin of water-soluble OA with significant atmospheric processing during long-range transport to the eastern Himalayan region. We used the thermodynamic prediction of aerosol liquid water (ALW) to examine the formation mechanism of secondary OA (SOA) such as oxalic acid. Correlations of ALW with SO42- and water-soluble organic matter show that ALW is sensitive to both anthropogenic sulfate and water-soluble organic compounds in Himalayan aerosols. A strong positive relationship of C2 acid with predicted ALW provides evidence of extensive SOA formation from precursors via aqueous phase photochemical processes. This inference is supported by positive correlations of C2 acid relative abundance with diagnostic mass concentration ratios of C2 acid to precursor molecules. Our findings underscore the importance of anthropogenic sources and ALW in SOA formation through aqueous phase processes in the eastern Himalaya.

5.
Sci Rep ; 12(1): 7761, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545631

RESUMEN

The dust plume tracks from the Middle East and Eastern Africa to the Indian subcontinent have an impact on the atmospheric and ocean biogeochemistry of the Arabian Sea (AS). Here, we present the impact of dust on net primary productivity (NPP) over the AS using satellite-based observation and model simulation. Seasonal episodes and long-term trends in dust optical depth (DOD), dust mass flux (DMF) and dust deposition flux (DDF) from 2007 to 2020 are quantified. Nearly 32% of the total dust is advected to the AS during transport (maximum in JJA; DMF ~ 33.1 Tg year-1 ~ 56% of annual and DDF ~ 5.5 Tg year-1 ~ 63% of annual). Over the last one and half decades, there has been a statistically significant decreasing trend in DOD, associated with precipitation, enhanced vegetation index and surface soil moisture over the landmasses in the proximity of the AS. Similarly, the depletion in DDF suppresses the NPP over different regions of the AS, especially over the central AS, where the oceanic supply of nutrients is limited.


Asunto(s)
Polvo , Minerales , África Oriental , Polvo/análisis , Medio Oriente , Océanos y Mares
6.
Environ Sci Pollut Res Int ; 28(18): 22864-22877, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33426588

RESUMEN

Continuous and multi-year (2008-2012) measurements of black carbon (BC) mass concentrations (MBC), carried out from the semiarid tropical site Udaipur (24.6° N, 74° E, 580 m a.s.l.) near the western Indian desert, are analyzed for their region-specific features. MBC varied over a wide range during the period of study, with the hourly mean values occurring as low as 0.09 to as high as 49.1 µg m-3, with the multi-year average ~ 4.5 ± 2.6 µg m-3. Annual variations showed the highest concentrations during November and December (winter seasonal mean = 7.4 ± 3.3 µg m-3) and the lowest in the monsoon months of July and August (monsoon seasonal mean = 2.5 ± 2.2 µg m-3). MBC showed significant inverse relationship with the planetary boundary layer height (ρ ~ - 0.50) as well as ventilation coefficient (ρ ~ - 0.72). Alike aforesaid atmospheric dynamic parameters, T, WS, and RH also possessed statistically significant negative correlations with monthly MBC. Enhancement in annual as well as diurnal amplitude in MBC during deficient monsoon years relative to excessive monsoon years have given marked indication of BC sink mechanism due to precipitation. Roles of long-range regional air pollutant transport also have been identified. Identical and consistent seasonal variation in percentage contribution of MBC with PM2.5 (varying from 2.6 to 9.1%) and absorption Angstrom exponent (αabs, monthly mean values varying from 0.77 ± 0.04 to 1.16 ± 0.08) gives evidence of substantial amount of enhanced anthropogenic source activities of fossil fuel incomplete combustion in post-monsoon and winter period.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , India , Material Particulado/análisis , Estaciones del Año , Hollín/análisis
7.
Sci Total Environ ; 580: 499-508, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28034546

RESUMEN

Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m2 and 33.45W/m2 respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m2 in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA