Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1503-D1507, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971295

RESUMEN

One challenge in the development of novel drugs is their interaction with potential off-targets, which can cause unintended side-effects, that can lead to the subsequent withdrawal of approved drugs. At the same time, these off-targets may also present a chance for the repositioning of withdrawn drugs for new indications, which are potentially rare or more severe than the original indication and where certain adverse reactions may be avoidable or tolerable. To enable further insights into this topic, we updated our database Withdrawn by adding pharmacovigilance data from the FDA Adverse Event Reporting System (FAERS), as well as mechanism of action and human disease pathway prediction features for drugs that are or were temporarily withdrawn or discontinued in at least one country. As withdrawal data are still spread over dozens of national websites, we are continuously updating our lists of discontinued or withdrawn drugs and related (off-)targets. Furthermore, new systematic entry points for browsing the data, such as an ATC tree, were added, increasing the accessibility of the database in a user-friendly way. Withdrawn 2.0 is publicly available without the need for registration or login at https://bioinformatics.charite.de/withdrawn_3/index.php.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacovigilancia , Retirada de Medicamento por Seguridad , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Bases de Datos Farmacéuticas/normas
2.
Nucleic Acids Res ; 50(W1): W726-W731, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524552

RESUMEN

Since the last published update in 2014, the SuperPred webserver has been continuously developed to offer state-of-the-art models for drug classification according to ATC classes and target prediction. For the first time, a thoroughly filtered ATC dataset, that is suitable for accurate predictions, is provided along with detailed information on the achieved predictions. This aims to overcome the challenges in comparing different published prediction methods, since performance can vary greatly depending on the training dataset used. Additionally, both ATC and target prediction have been reworked and are now based on machine learning models instead of overall structural similarity, stressing the importance of functional groups for the mechanism of action of small molecule substances. Additionally, the dataset for the target prediction has been extensively filtered and is no longer only based on confirmed binders but also includes non-binding substances to reduce false positives. Using these methods, accuracy for the ATC prediction could be increased by almost 5% to 80.5% compared to the previous version, and additionally the scoring function now offers values which are easily assessable at first glance. SuperPred 3.0 is publicly available without the need for registration at: https://prediction.charite.de/index.php.


Asunto(s)
Bases de Datos de Compuestos Químicos , Aprendizaje Automático , Preparaciones Farmacéuticas , Preparaciones Farmacéuticas/química
3.
Nucleic Acids Res ; 46(D1): D1261-D1265, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29106611

RESUMEN

Metabolic capabilities of microorganisms include the production of secondary metabolites (e.g. antibiotics). The analysis of microbial volatile organic compounds (mVOCs) is an emerging research field with huge impact on medical, agricultural and biotechnical applied and basic science. The mVOC database (v1) has grown with microbiome research and integrated species information with data on emitted volatiles. Here, we present the mVOC 2.0 database with about 2000 compounds from almost 1000 species and new features to work with the database. The extended collection of compounds was augmented with data regarding mVOC-mediated effects on plants, fungi, bacteria and (in-)vertebrates. The mVOC database 2.0 now features a mass spectrum finder, which allows a quick mass spectrum comparison for compound identification and the generation of species-specific VOC signatures. Automatic updates, useful links and search for mVOC literature are also included. The mVOC database aggregates and refines available information regarding microbial volatiles, with the ultimate aim to provide a comprehensive and informative platform for scientists working in this research field. To address this need, we maintain a publicly available mVOC database at: http://bioinformatics.charite.de/mvoc.


Asunto(s)
Bacterias/química , Bases de Datos de Compuestos Químicos , Hongos/química , Compuestos Orgánicos Volátiles/química , Recolección de Datos , Internet , Espectrometría de Masas , Microbiota , Interfaz Usuario-Computador
4.
J Chem Inf Model ; 58(9): 1847-1857, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30105913

RESUMEN

Assay interference is an acknowledged problem in high-throughput screening, and pan-assay interference compounds (PAINS) filters are one of a number of approaches that have been suggested for identification of potential screening artifacts or frequent hitters. Many studies have highlighted that the unwary usage of these structural alerts should be reconsidered and criticized their extrapolation beyond the applicability domain. A large-scale investigation of the activity profiles and the structural context of PAINS might provide a better assessment of whether this extrapolation is valid. To this end, multiple publicly accessible compound collections were screened, and the PAINS statistics are comprehensively presented and discussed. Next, the promiscuity trends and activity profiles of PAINS were compared with those compounds not matching any PAINS substructures. Overall, PAINS demonstrated higher promiscuity and relatively higher assay hit rates compared with the other compounds. Furthermore, nearly 2000 distinct target-ligand complexes containing PAINS were analyzed, and the interactions were quantified and compared. In more than 50% of the instances, the PAINS atoms participated in interactions more frequently compared with the remaining atoms of the ligand structure. Many PAINS participated in crucial interactions that were often responsible for binding of the ligand, which reaffirms their distinction from those responsible for assay interference. In conclusion, we reinforce that while it is important to employ compound filters to eliminate nonspecific hits, establishing a set of statistically significant and validated PAINS filters is essential to restrain the black-box practice of triaging screening hits matching any of the proposed 480 alerts.


Asunto(s)
Bioensayo , Descubrimiento de Drogas , Sitios de Unión , Ensayos Analíticos de Alto Rendimiento , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica
5.
Nucleic Acids Res ; 44(D1): D932-7, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26590406

RESUMEN

Here, we present an updated version of CancerResource, freely available without registration at http://bioinformatics.charite.de/care. With upcoming information on target expression and mutations in patients' tumors, the need for systems supporting decisions on individual therapy is growing. This knowledge is based on numerous, experimentally validated drug-target interactions and supporting analyses such as measuring changes in gene expression using microarrays and HTS-efforts on cell lines. To enable a better overview about similar drug-target data and supporting information, a series of novel information connections are established and made available as described in the following. CancerResource contains about 91,000 drug-target relations, more than 2000 cancer cell lines and drug sensitivity data for about 50,000 drugs. CancerResource enables the capability of uploading external expression and mutation data and comparing them to the database's cell lines. Target genes and compounds are projected onto cancer-related pathways to get a better overview about how drug-target interactions benefit the treatment of cancer. Features like cellular fingerprints comprising of mutations, expression values and drug-sensitivity data can promote the understanding of genotype to drug sensitivity associations. Ultimately, these profiles can also be used to determine the most effective drug treatment for a cancer cell line most similar to a patient's tumor cells.


Asunto(s)
Antineoplásicos/farmacología , Bases de Datos Genéticas , Mutación , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Línea Celular Tumoral , Expresión Génica , Humanos , Neoplasias/metabolismo
6.
Nucleic Acids Res ; 44(D1): D1080-6, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26553801

RESUMEN

Post-marketing drug withdrawals can be associated with various events, ranging from safety issues such as reported deaths or severe side-effects, to a multitude of non-safety problems including lack of efficacy, manufacturing, regulatory or business issues. During the last century, the majority of drugs voluntarily withdrawn from the market or prohibited by regulatory agencies was reported to be related to adverse drug reactions. Understanding the underlying mechanisms of toxicity is of utmost importance for current and future drug discovery. Here, we present WITHDRAWN, a resource for withdrawn and discontinued drugs publicly accessible at http://cheminfo.charite.de/withdrawn. Today, the database comprises 578 withdrawn or discontinued drugs, their structures, important physico-chemical properties, protein targets and relevant signaling pathways. A special focus of the database lies on the drugs withdrawn due to adverse reactions and toxic effects. For approximately one half of the drugs in the database, safety issues were identified as the main reason for withdrawal. Withdrawal reasons were extracted from the literature and manually classified into toxicity types representing adverse effects on different organs. A special feature of the database is the presence of multiple search options which will allow systematic analyses of withdrawn drugs and their mechanisms of toxicity.


Asunto(s)
Bases de Datos Farmacéuticas , Retirada de Medicamento por Seguridad , Recall de Medicamento , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Internet , Preparaciones Farmacéuticas/química , Polimorfismo de Nucleótido Simple , Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Nucleic Acids Res ; 42(Web Server issue): W26-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24878925

RESUMEN

The SuperPred web server connects chemical similarity of drug-like compounds with molecular targets and the therapeutic approach based on the similar property principle. Since the first release of this server, the number of known compound-target interactions has increased from 7000 to 665,000, which allows not only a better prediction quality but also the estimation of a confidence. Apart from the addition of quantitative binding data and the statistical consideration of the similarity distribution in all drug classes, new approaches were implemented to improve the target prediction. The 3D similarity as well as the occurrence of fragments and the concordance of physico-chemical properties is also taken into account. In addition, the effect of different fingerprints on the prediction was examined. The retrospective prediction of a drug class (ATC code of the WHO) allows the evaluation of methods and descriptors for a well-characterized set of approved drugs. The prediction is improved by 7.5% to a total accuracy of 75.1%. For query compounds with sufficient structural similarity, the web server allows prognoses about the medical indication area of novel compounds and to find new leads for known targets. SuperPred is publicly available without registration at: http://prediction.charite.de.


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/clasificación , Programas Informáticos , Internet , Ligandos , Proteínas/efectos de los fármacos , Proteínas/metabolismo
8.
BMC Bioinformatics ; 16: 308, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26403354

RESUMEN

BACKGROUND: Searching for two-dimensional (2D) structural similarities is a useful tool to identify new active compounds in drug-discovery programs. However, as 2D similarity measures neglect important structural and functional features, similarity by 2D might be underestimated. In the present study, we used combined 2D and three-dimensional (3D) similarity comparisons to reveal possible new functions and/or side-effects of known bioactive compounds. RESULTS: We utilised more than 10,000 compounds from the SuperTarget database with known inhibition values for twelve different anti-cancer targets. We performed all-against-all comparisons resulting in 2D similarity landscapes. Among the regions with low 2D similarity scores are inhibitors of vascular endothelial growth factor receptor (VEGFR) and inhibitors of poly ADP-ribose polymerase (PARP). To demonstrate that 3D landscape comparison can identify similarities, which are untraceable in 2D similarity comparisons, we analysed this region in more detail. This 3D analysis showed the unexpected structural similarity between inhibitors of VEGFR and inhibitors of PARP. Among the VEGFR inhibitors that show similarities to PARP inhibitors was Vatalanib, an oral "multi-targeted" small molecule protein kinase inhibitor being studied in phase-III clinical trials in cancer therapy. An in silico docking simulation and an in vitro HT universal colorimetric PARP assay confirmed that the VEGFR inhibitor Vatalanib exhibits off-target activity as a PARP inhibitor, broadening its mode of action. CONCLUSION: In contrast to the 2D-similarity search, the 3D-similarity landscape comparison identifies new functions and side effects of the known VEGFR inhibitor Vatalanib.


Asunto(s)
Ftalazinas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Piridinas/química , Sitios de Unión , Colorimetría , Biología Computacional , Descubrimiento de Drogas , Humanos , Células MCF-7 , Microscopía Fluorescente , Simulación del Acoplamiento Molecular , Ftalazinas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Piridinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Science ; 358(6367)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191878

RESUMEN

Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Ratones , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores
10.
PLoS One ; 10(5): e0124878, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26024233

RESUMEN

Immune mediated adverse drug reactions (IM-ADRs) remain a significant source of patient morbidity that have more recently been shown to be associated with specific class I and/or II human leukocyte antigen (HLA) alleles. Abacavir-induced hypersensitivity syndrome is a CD8+ T cell dependent IM-ADR that is exclusively mediated by HLA-B*57:01. We and others have previously shown that abacavir can occupy the floor of the peptide binding groove of HLA-B*57:01 molecules, increasing the affinity of certain self peptides resulting in an altered peptide-binding repertoire. Here, we have identified another drug, acyclovir, which appears to act in a similar fashion. As with abacavir, acyclovir showed a dose dependent increase in affinity for peptides with valine and isoleucine at their C-terminus. In agreement with the binding studies, HLA-B*57:01 peptide-elution studies performed in the presence of acyclovir revealed an increased number of endogenously bound peptides with a C-terminal isoleucine. Accordingly, we have hypothesized that acyclovir acts by the same mechanism as abacavir, although our data also suggest the overall effect is much smaller: the largest changes of peptide affinity for acyclovir were 2-5 fold, whereas for abacavir this effect was as much as 1000-fold. Unlike abacavir, acyclovir is not known to cause IM-ADRs. We conclude that the modest effect of acyclovir on HLA binding affinity in contrast to the large effect of abacavir is insufficient to trigger a hypersensitivity syndrome. We further support this by functional in vitro studies where acyclovir, unlike abacavir, was unable to produce an increase in IFN-γ upon expansion of HLA-B*57:01+ PBMCs from healthy donors. Using abacavir and acyclovir as examples we therefore propose an in vitro pre-clinical screening strategy, whereby thresholds can be applied to MHC-peptide binding assays to determine the likelihood that a drug could cause a clinically relevant IM-ADR.


Asunto(s)
Aciclovir/inmunología , Aciclovir/metabolismo , Antivirales/inmunología , Antivirales/metabolismo , Hipersensibilidad a las Drogas/inmunología , Antígenos HLA-B/metabolismo , Células Cultivadas , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA