Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lab Invest ; : 102146, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357799

RESUMEN

Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm which can arise at any anatomic site and is characterized by recurrent NAB2::STAT6 fusions and metastatic progression in 10-30%. The cell of origin has not been identified. Despite some progress in understanding the contribution of heterogeneous fusion types and secondary mutations to SFT biology, epigenetic alterations in extrameningeal SFT remain largely unexplored, and most sarcoma research to date has focused on the use of methylation profiling for tumor classification. We interrogated genome-wide DNA methylation in 79 SFTs to identify informative epigenetic changes. RNA-seq data from targeted panels and data from the Cancer Genome Atlas (TCGA) were used for orthogonal validation of selected findings. In unsupervised clustering analysis, the top 500 most variable CpGs segregated SFTs by primary anatomic site. Differentially methylated genes (DMGs) associated with primary SFT site included EGFR, TBX15, multiple HOX genes and their cofactors EBF1, EBF3, and PBX1, as well as RUNX1 and MEIS1. Of the 20 DMGs that were interrogated on the RNA-seq panel, twelve were significantly differentially expressed according to site. However, with the exception of TBX15, most of these also showed differential expression according to NAB2::STAT6 fusion type, suggesting that the fusion oncogene contributes to transcriptional regulation of these genes. Transcriptomic data confirmed an inverse correlation between gene methylation and the expression of TBX15 in both SFT and TCGA sarcomas. TBX15 also showed differential mRNA expression and 5' UTR methylation between tumors located in different anatomic sites in TCGA data. In all analyses, TBX15 methylation and mRNA expression retained the strongest association with tissue of origin in SFT and other sarcomas, suggesting a possible marker to distinguish metastatic tumors from new primaries without genomic profiling. Epigenetic signatures may further help to identify SFT progenitor cells at different anatomic sites.

2.
Br J Cancer ; 128(10): 1941-1954, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959380

RESUMEN

BACKGROUND: Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS: To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS: Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION: These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.


Asunto(s)
Sarcoma de Células Claras , Niño , Adolescente , Adulto Joven , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/metabolismo , Sarcoma de Células Claras/patología , Transcriptoma , Genómica , Secuencia de Bases , ARN , Proteínas de Fusión Oncogénica/genética
3.
Mod Pathol ; 34(5): 951-960, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33009490

RESUMEN

Solitary fibrous tumors are a type of translocation-associated sarcoma with up to 30% rates of metastasis and poor response to conventional chemotherapy. Other translocation-associated sarcomas have been shown to display elevated expression of various cancer-testis antigens which may render them susceptible to immunotherapy strategies such as cancer vaccines and adoptive T-cell therapy. After an RNA sequencing assay brought the cancer-testis antigen Preferentially Expressed Antigen In Melanoma (PRAME) to our attention as possibly being upregulated in aggressive TERT promoter-mutated solitary fibrous tumors, we used tissue microarrays to asses PRAME expression in a large series of previously characterized solitary fibrous tumors, with correlation to various clinicopathologic features, as well as with tumor-infiltrating macrophages and the associated signal regulatory protein α (SIRPα)-CD47 regulatory checkpoint. We found that PRAME was expressed in 165/180 solitary fibrous tumors, with high expression seen in 58%, irrespective of TERT promoter status. Elevated PRAME expression was more frequent in primary intrathoracic solitary fibrous tumors and correlated with older age at primary diagnosis. Elevated PRAME was also associated with features suggestive of immune evasion, including lower numbers of antigen-presenting CD163+ and CD68+ macrophages, and expression of the "don't eat me" receptor CD47 on tumor cells. Taken together, these features suggest that strategies targeting PRAME with or without concomitant SIRPα-CD47 axis inhibition may represent a potential future therapeutic option in aggressive solitary fibrous tumor.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Neoplasias de los Tejidos Blandos/metabolismo , Tumores Fibrosos Solitarios/metabolismo , Factores de Edad , Anciano , Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Inmunoterapia , Masculino , Persona de Mediana Edad , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Tumores Fibrosos Solitarios/genética , Tumores Fibrosos Solitarios/patología
4.
Int J Cancer ; 142(1): 57-65, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28891048

RESUMEN

There are limited data regarding the molecular characterization of undifferentiated pleomorphic sarcomas (UPS; formerly malignant fibrous histiocytoma). This study aimed to investigate the utility of next generation sequencing (NGS) in UPS to identify subsets of patients who harbour actionable mutations. Patients diagnosed with UPS underwent pathological re-evaluation by a pathologist specializing in sarcoma. Tumor DNA was isolated from archived fresh frozen tissue samples and genotyped using NGS with the Illumina MiSeq TruSeq Amplicon Cancer Panel (48 genes, 212 amplicons). In total, 95 patients initially classified with UPS were identified. Following pathology re-review the histological subtypes were reclassified to include: Myxofibrosarcoma (MFS, N = 44); UPS(N = 18); and Others (N = 27; including undifferentiated spindle cell sarcoma (N = 15) and dedifferentiated liposarcoma (N = 6)). Seven cases were excluded from further analysis for other reasons. Baseline demographics of the finalized cohort (N = 88) showed a median age of 66 years (32-95), primarily with stage I-III disease (92%) and high-grade (86%) lesions. Somatic mutations were identified in 31 cases (35%)(Total mutations = 36: solitary mutation(n = 27); two mutations( =n = 3); three mutations(n = 1)). The most commonly identified mutations were in TP53 (n = 24), ATM (n = 3) and PIK3CA (n = 2). Three of 43 patients with MFS and one of 18 patients with UPS had clinically relevant mutations, mainly related to biomarkers of prediction of response; however few had targetable driver mutations. Somatic mutation status did not influence disease free or overall survival. Based on the small number of clinically relevant mutations, these data do not support the routine use of targeted NGS panels outside of research protocols in UPS.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histiocitoma Fibroso Maligno/genética , Neoplasias de los Tejidos Blandos/genética , Adulto , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/análisis , ADN de Neoplasias/genética , Femenino , Histiocitoma Fibroso Maligno/mortalidad , Histiocitoma Fibroso Maligno/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Mutación , Neoplasias de los Tejidos Blandos/mortalidad , Neoplasias de los Tejidos Blandos/patología
5.
Int J Cancer ; 142(8): 1594-1601, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29210060

RESUMEN

Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over the past three decades and are particularly low for patients with metastatic disease. We conducted a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants associated with overall survival in 632 patients with osteosarcoma, including 523 patients of European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, with and without adjustment for metastatic disease. The results were combined across the European and Brazilian case sets using a random-effects meta-analysis. The strongest association after meta-analysis was for rs3765555 at 9p24.1, which was inversely associated with overall survival (HR = 1.76; 95% CI 1.41-2.18, p = 4.84 × 10-7 ). After imputation across this region, the combined analysis identified two SNPs that reached genome-wide significance. The strongest single association was with rs55933544 (HR = 1.9; 95% CI 1.5-2.4; p = 1.3 × 10-8 ), which localizes to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and Brazilian case sets. Using publicly available data, the risk allele was associated with lower expression of IL33 and low expression of IL33 was associated with poor survival in an independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. Further studies are needed to confirm this association and shed light on the biological underpinnings of this susceptibility locus.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Interleucina-33/genética , Osteosarcoma/genética , Osteosarcoma/mortalidad , Adulto , Alelos , Brasil , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Modelos de Riesgos Proporcionales , Tasa de Supervivencia , Población Blanca/genética
6.
J Pathol ; 238(1): 63-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26365879

RESUMEN

We carried out whole genome and transcriptome sequencing on four tumour/normal pairs of epithelioid sarcoma. These index cases were supplemented with whole transcriptome sequencing of three additional tumours and three cell lines. Unlike rhabdoid tumour (the other major group of SMARCB1-negative cancers), epithelioid sarcoma shows a complex genome with a higher mutational rate, comparable to that of ovarian carcinoma. Despite this mutational burden, SMARCB1 mutations remain the most frequently recurring event and are probably critical drivers of tumour formation. Several cases show heterozygous SMARCB1 mutations without inactivation of the second allele, and we explore this further in vitro. Finding CDKN2A deletions in our discovery cohort, we evaluated CDKN2A protein expression in a tissue microarray. Six out of 16 cases had lost CDKN2A in greater than or equal to 90% of cells, while the remaining cases had retained the protein. Expression analysis of epithelioid sarcoma cell lines by transcriptome sequencing shows a unique profile that does not cluster with any particular tissue type or with other SWI/SNF-aberrant lines. Evaluation of the levels of members of the SWI/SNF complex other than SMARCB1 revealed that these proteins are expressed as part of a residual complex, similarly to previously studied rhabdoid tumour lines. This residual SWI/SNF is susceptible to synthetic lethality and may therefore indicate a therapeutic opportunity.


Asunto(s)
Sarcoma/genética , Transcriptoma , Western Blotting , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Inmunoprecipitación , Hibridación Fluorescente in Situ , Reacción en Cadena de la Polimerasa Multiplex , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño , Proteína SMARCB1 , Análisis de Matrices Tisulares , Factores de Transcripción/genética , Transfección
7.
Nat Genet ; 30(3): 306-10, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11850620

RESUMEN

Enchondromas are common benign cartilage tumors of bone. They can occur as solitary lesions or as multiple lesions in enchondromatosis (Ollier and Maffucci diseases). Clinical problems caused by enchondromas include skeletal deformity and the potential for malignant change to chondrosarcoma. The extent of skeletal involvement is variable in enchondromatosis and may include dysplasia that is not directly attributable to enchondromas. Enchondromatosis is rare, obvious inheritance of the condition is unusual and no candidate loci have been identified. Enchondromas are usually in close proximity to, or in continuity with, growth-plate cartilage. Consequently, they may result from abnormal regulation of proliferation and terminal differentiation of chondrocytes in the adjoining growth plate. In normal growth plates, differentiation of proliferative chondrocytes to post-mitotic hypertrophic chondrocytes is regulated in part by a tightly coupled signaling relay involving parathyroid hormone related protein (PTHrP) and Indian hedgehog (IHH). PTHrP delays the hypertrophic differentiation of proliferating chondrocytes, whereas IHH promotes chondrocyte proliferation. We identified a mutant PTH/PTHrP type I receptor (PTHR1) in human enchondromatosis that signals abnormally in vitro and causes enchondroma-like lesions in transgenic mice. The mutant receptor constitutively activates Hedgehog signaling, and excessive Hedgehog signaling is sufficient to cause formation of enchondroma-like lesions.


Asunto(s)
Neoplasias Óseas/fisiopatología , Encondromatosis/fisiopatología , Mutación , Receptores de Hormona Paratiroidea/fisiología , Animales , Neoplasias Óseas/genética , Células COS , Encondromatosis/genética , Proteínas Hedgehog , Humanos , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Receptor de Hormona Paratiroídea Tipo 1 , Receptores de Hormona Paratiroidea/genética , Receptores de Hormona Paratiroidea/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal , Transactivadores/metabolismo
8.
Cancer Cell ; 6(4): 387-98, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15488761

RESUMEN

The gene hypermethylated in cancer 1 (HIC1) is epigenetically inactivated, but not mutated, in cancer. Here we show that cooperative loss of Hic1 with p53, but not INK4a, yields distinct tumor phenotypes in mice. Germline deletion of one allele of each gene on the opposite chromosome yields breast and ovarian carcinomas and metastatic osteosarcomas with epigenetic inactivation of the wild-type Hic1 allele. Germline deletion of the two genes on the same chromosome results in earlier appearance and increased prevalence and aggressiveness of osteosarcomas with genetic deletion of both wild-type genes. In human osteosarcomas, hypermethylation of HIC1 is frequent only in tumors with p53 mutations. Our results indicate the importance of genes altered only through epigenetic mechanisms in cancer progression in conjunction with genetically modified tumor suppressor genes.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Epigénesis Genética/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Deleción Cromosómica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Metilación de ADN , Genes Supresores de Tumor , Heterocigoto , Humanos , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Noqueados , Mutación/genética , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Osteosarcoma/genética , Osteosarcoma/patología , Fenotipo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
9.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35158816

RESUMEN

Sarcomas are a heterogeneous group of mesenchymal neoplasms, many of which are associated with a high risk of metastasis and poor prognosis. Conventional chemotherapy and targeted therapies have varying effects across individuals and tumour subtypes. The current therapies frequently provide limited clinical benefit; hence, more effective treatments are urgently needed. Recent advances in immunotherapy, such as checkpoint inhibition or adoptive cell therapy (ACT), show potential in increasing efficacy by providing a more personalized treatment. Therapy with tumour-infiltrating lymphocytes (TILs) is an emerging field in immunotherapy. Here, we collected 190 sarcoma tumour specimens from patients without pre-operative adjuvant treatment in order to isolate TILs. We compared different methods of TIL expansion and optimized a protocol specifically for efficacy in culturing TILs from sarcoma. The expanded TIL populations were characterized by flow cytometry analysis using CD3, CD4, CD8, CD14, CD19 and CD56 markers. The TIL populations were non-specifically stimulated to establish TIL reactivity. Through an optimized expansion protocol, TILs were isolated and cultured from 54 of 92 primary sarcoma specimens. The isolated TILs varied in CD4+ and CD8+ T-cell compositions and retained their ability to release IFNγ upon stimulation. Our results suggest that certain sarcoma subtypes have the potential to yield a sufficient number of TILs for TIL therapy.

10.
Genes Chromosomes Cancer ; 49(6): 518-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20196171

RESUMEN

The chromosomal region 12q13-15 is recurrently amplified in osteosarcoma (OS), but its importance in bone tumor development remains unknown. Although there are two major candidate genes (MDM2, a TP53 downregulator, and CDK4, involved in cell cycle progression) considered to be the driving genes in this region, the size of the amplicon and number of genes involved have not been determined. In this study, we used 130 classical OS and 15 parosteal OS to determine MDM2 and CDK4 amplification frequency in OS. Tumors in which these genes were amplified were used to map the 12q13-15 amplified region and to determine its correlation with clinical prognosis. The 12q13-15 amplification was more prevalent in parosteal OS (67% of cases) than in high-grade classical OS (12%). Quantitative real-time PCR of MDM2, CDK4, and 25 other genes showed that this region contains two different amplicons: one at 12q15 centered on MDM2 and one at 12q13-14 centered on CDK4. Both regions were frequently co-amplified in both types of OS, and MDM2 and CDK4 amplification was correlated with higher expression levels for both genes. Univariate and multivariate analyses of clinical data indicated that classical OS patients whose tumors exhibited MDM2 amplification were more likely to be older at diagnosis (median age 32.6 vs. 17.8 years) and female (66.7 vs. 33.3%) than those without gene amplification. There was no association with other clinical parameters. In conclusion, co-amplification of MDM2 and CDK4 in two separate amplicons occurs frequently in parosteal OS and less so in classical high-grade OS.


Asunto(s)
Neoplasias Óseas/genética , Cromosomas Humanos Par 12 , Quinasa 4 Dependiente de la Ciclina/genética , Osteosarcoma/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Adulto , Anciano , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/metabolismo , Niño , Preescolar , Mapeo Cromosómico , Quinasa 4 Dependiente de la Ciclina/biosíntesis , Femenino , Amplificación de Genes , Expresión Génica , Genes p53 , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Mutación , Osteosarcoma/diagnóstico , Osteosarcoma/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-mdm2/biosíntesis , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA