Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(43): 36488-98, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22942284

RESUMEN

The first step in V(D)J recombination is the formation of specific DNA double-strand breaks (DSBs) by the RAG1 and RAG2 proteins, which form the RAG recombinase. DSBs activate a complex network of proteins termed the DNA damage response (DDR). A key early event in the DDR is the phosphorylation of histone H2AX around DSBs, which forms a binding site for the tandem BRCA1 C-terminal (tBRCT) domain of MDC1. This event is required for subsequent signal amplification and recruitment of additional DDR proteins to the break site. RAG1 bears a histone H2AX-like motif at its C terminus (R1Ct), making it a putative MDC1-binding protein. In this work we show that the tBRCT domain of MDC1 binds the R1Ct motif of RAG1. Surprisingly, we also observed a second binding interface between the two proteins that involves the Proline-Serine-Threonine rich (PST) repeats of MDC1 and the N-terminal non-core region of RAG1 (R1Nt). The repeats-R1Nt interaction is constitutive, whereas the tBRCT-R1Ct interaction likely requires phosphorylation of the R1Ct motif of RAG1. As the C terminus of RAG1 has been implicated in inhibition of RAG activity, we propose a model in which phosphorylation of the R1Ct motif of RAG1 functions as a self-initiated regulatory signal.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , VDJ Recombinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Proteínas Nucleares/genética , Mapeo Peptídico/métodos , Fosforilación , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Transactivadores/genética , VDJ Recombinasas/genética
2.
EMBO J ; 27(1): 17-26, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18059473

RESUMEN

EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so that their activity can be assayed also in vivo before biochemical handling. Tandem EmrE was built with two identical monomers genetically fused tail to head (C-terminus of the first to N-terminus of the second monomer) with hydrophilic linkers of varying length. All the constructs conferred resistance to ethidium by actively removing it from the cytoplasm. The purified proteins bound substrate and transported methyl viologen into proteoliposomes by a proton-dependent mechanism. A tandem where one of the essential glutamates was replaced with glutamine transported only monovalent substrates and displayed a modified stoichiometry. The results support a parallel topology of the protomers in the functional dimer. The implications regarding insertion and evolution of membrane proteins are discussed.


Asunto(s)
Antiportadores/química , Antiportadores/genética , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Recombinantes de Fusión/síntesis química , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Transporte Biológico Activo/genética , Citoplasma/química , Citoplasma/genética , Dimerización , Transporte de Electrón/genética , Escherichia coli/química , Etidio/química , Etidio/farmacocinética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína/genética , Proteínas Recombinantes de Fusión/química , Especificidad por Sustrato/genética , Termodinámica
3.
J Biol Chem ; 285(20): 15234-15244, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20308069

RESUMEN

Inverted repeats in ion-coupled transporters have evolved independently in many unrelated families. It has been suggested that this inverted symmetry is an essential element of the mechanism that allows for the conformational transitions in transporters. We show here that small multidrug transporters offer a model for the evolution of such repeats. This family includes both homodimers and closely related heterodimers. In the former, the topology determinants, evidently identical in each protomer, are weak, and we show that for EmrE, an homodimer from Escherichia coli, the insertion into the membrane is random, and dimers are functional whether they insert into the cytoplasmic membrane with the N- and C-terminal domains facing the inside or the outside of the cell. Also, mutants designed to insert with biased topology are functional regardless of the topology. In the case of EbrAB, a heterodimer homologue supposed to interact antiparallel, we show that one of the subunits, EbrB, can also function as a homodimer, most likely in a parallel mode. In addition, the EmrE homodimer can be forced to an antiparallel topology by fusion of an additional transmembrane segment. The simplicity of the mechanism of coupling ion and substrate transport and the few requirements for substrate recognition provide the robustness necessary to tolerate such a unique and unprecedented ambiguity in the interaction of the subunits and in the dimer topology relative to the membrane. The results suggest that the small multidrug transporters are at an evolutionary junction and provide a model for the evolution of structure of transport proteins.


Asunto(s)
Antiportadores/genética , Proteínas de Escherichia coli/genética , Evolución Molecular , Proteínas de Transporte de Membrana/genética , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Antiportadores/química , Dimerización , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Datos de Secuencia Molecular , Conformación Proteica
4.
Oncogene ; 38(17): 3103-3118, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622338

RESUMEN

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.


Asunto(s)
Antineoplásicos/administración & dosificación , Reparación del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Espironolactona/administración & dosificación , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Reposicionamiento de Medicamentos , Células HeLa , Humanos , Ratones , Neoplasias/genética , Espironolactona/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA