Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(8): 4815-4828, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36182267

RESUMEN

Aging is associated with brain iron accumulation, which has been linked to cognitive decline. However, how brain iron affects the structure and function of cognitive brain networks remains unclear. Here, we explored the possibility that iron load in gray matter is associated with disruption of white matter (WM) microstructure within a network supporting cognitive function, in a cohort of 95 cognitively normal older adults (age range: 60-86). Functional magnetic resonance imaging was used to localize a set of brain regions involved in working memory and diffusion tensor imaging based probabilistic tractography was used to identify a network of WM tracts connecting the functionally defined regions. Brain iron concentration within these regions was evaluated using quantitative susceptibility mapping and microstructural properties were assessed within the identified tracts using neurite orientation dispersion and density imaging. Results indicated that high brain iron concentration was associated with low neurite density (ND) within the task-relevant WM network. Further, regional associations were observed such that brain iron in cortical regions was linked with lower ND in neighboring but not distant WM tracts. Our results provide novel evidence suggesting that age-related increases in brain iron concentration are associated with the disruption of WM tracts supporting cognitive function in normal aging.


Asunto(s)
Sustancia Blanca , Humanos , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Cognición , Encéfalo , Hierro
2.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951718

RESUMEN

INTRODUCTION: Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS: We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS: CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION: The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS: This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.

3.
Stroke ; 54(11): 2785-2793, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37712232

RESUMEN

BACKGROUND: Increasing evidence suggests that enlarged perivascular spaces (ePVS) are associated with cognitive dysfunction in aging. However, the pathogenesis of ePVS remains unknown. Here, we tested the possibility that baseline cerebrovascular dysfunction, as measured by a magnetic resonance imaging measure of cerebrovascular reactivity, contributes to the later development of ePVS. METHODS: Fifty cognitively unimpaired, older adults (31 women; age range, 60-84 years) underwent magnetic resonance imaging scanning at baseline and follow-up separated by ≈2.5 years. ePVS were counted in the basal ganglia, centrum semiovale, midbrain, and hippocampus. Cerebrovascular reactivity, an index of the vasodilatory capacity of cerebral small vessels, was assessed using carbon dioxide inhalation while acquiring blood oxygen level-dependent magnetic resonance images. RESULTS: Low baseline cerebrovascular reactivity values in the basal ganglia were associated with increased follow-up ePVS counts in the basal ganglia after controlling for age, sex, and baseline ePVS values (estimate [SE]=-3.18 [0.96]; P=0.002; [95% CI, -5.11 to -1.24]). This effect remained significant after accounting for self-reported risk factors of cerebral small vessel disease (estimate [SE]=-3.10 [1.00]; P=0.003; [CI, -5.11 to -1.09]) and neuroimaging markers of cerebral small vessel disease (estimate [SE]=-2.72 [0.99]; P=0.009; [CI, -4.71 to -0.73]). CONCLUSIONS: Our results demonstrate that low baseline cerebrovascular reactivity is a risk factor for later development of ePVS.


Asunto(s)
Ganglios Basales , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Ganglios Basales/diagnóstico por imagen , Envejecimiento , Imagen por Resonancia Magnética , Neuroimagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones
4.
Neuroimage ; 249: 118835, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936923

RESUMEN

Quantitative susceptibility mapping (QSM) is an MRI-based, computational method for anatomically localizing and measuring concentrations of specific biomarkers in tissue such as iron. Growing research suggests QSM is a viable method for evaluating the impact of iron overload in neurological disorders and on cognitive performance in aging. Several software toolboxes are currently available to reconstruct QSM maps from 3D GRE MR Images. However, few if any software packages currently exist that offer fully automated pipelines for QSM-based data analyses: from DICOM images to region-of-interest (ROI) based QSM values. Even less QSM-based software exist that offer quality control measures for evaluating the QSM output. Here, we address these gaps in the field by introducing and demonstrating the reliability and external validity of Ironsmith; an open-source, fully automated pipeline for creating and processing QSM maps, extracting QSM values from subcortical and cortical brain regions (89 ROIs) and evaluating the quality of QSM data using SNR measures and assessment of outlier regions on phase images. Ironsmith also features automatic filtering of QSM outlier values and precise CSF-only QSM reference masks that minimize partial volume effects. Testing of Ironsmith revealed excellent intra- and inter-rater reliability. Finally, external validity of Ironsmith was demonstrated via an anatomically selective relationship between motor performance and Ironsmith-derived QSM values in motor cortex. In sum, Ironsmith provides a freely-available, reliable, turn-key pipeline for QSM-based data analyses to support research on the impact of brain iron in aging and neurodegenerative disease.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Programas Informáticos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Neuroimagen/normas
5.
Neuroimage ; 245: 118754, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34826595

RESUMEN

Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.


Asunto(s)
Circulación Cerebrovascular , Hipercapnia/diagnóstico por imagen , Administración por Inhalación , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Dióxido de Carbono/farmacología , Femenino , Voluntarios Sanos , Humanos , Hipercapnia/metabolismo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Adulto Joven
6.
Acta Neuropathol ; 141(1): 1-24, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098484

RESUMEN

Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.


Asunto(s)
Encéfalo/patología , Arteriosclerosis Intracraneal/patología , Anciano , Anciano de 80 o más Años , Animales , Arteriolas/patología , Angiopatía Amiloide Cerebral , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Humanos , Arteriosclerosis Intracraneal/psicología , Neuroimagen
7.
Alzheimers Dement ; 17(12): 2020-2029, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33949773

RESUMEN

INTRODUCTION: We tested if water exchange across the blood-brain barrier (BBB), estimated with a noninvasive magnetic resonance imaging (MRI) technique, is associated with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) and neuropsychological function. METHODS: Forty cognitively normal older adults (67-86 years old) were scanned with diffusion-prepared, arterial spin labeling (DP-ASL), which estimates water exchange rate across the BBB (kw ). Participants also underwent CSF draw and neuropsychological testing. Multiple linear regression models were run with kw as a predictor of CSF concentrations and neuropsychological scores. RESULTS: In multiple brain regions, BBB kw was positively associated with CSF amyloid beta (Aß)42 concentration levels. BBB kw was only moderately associated with neuropsychological performance. DISCUSSION: Our results suggest that low water exchange rate across the BBB is associated with low CSF Aß42 concentration. These findings suggest that kw may be a promising noninvasive indicator of BBB Aß clearance functions, a possibility which should be further tested in future research.


Asunto(s)
Péptidos beta-Amiloides , Barrera Hematoencefálica/metabolismo , Voluntarios Sanos , Imagen por Resonancia Magnética , Fragmentos de Péptidos , Agua/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Femenino , Humanos , Masculino , Fragmentos de Péptidos/líquido cefalorraquídeo , Fragmentos de Péptidos/metabolismo , Marcadores de Spin , Proteínas tau/líquido cefalorraquídeo
8.
Alzheimers Dement ; 17(4): 716-725, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480157

RESUMEN

The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid- and neuroimaging-based biomarker kits and established harmonized multicenter study protocols (see companion paper "MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols" for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI-based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non-invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three-dimensional T1-weighted multi-echo magnetization-prepared rapid-acquisition-of-gradient-echo (ME-MPRAGE), three-dimensional T2-weighted fast spin echo fluid-attenuated-inversion-recovery (FLAIR), two-dimensional diffusion-weighted spin-echo echo-planar imaging (DWI), three-dimensional T2*-weighted multi-echo gradient echo (3D-GRE), three-dimensional T2 -weighted fast spin-echo imaging (T2w), and two-dimensional T2*-weighted gradient echo echo-planar blood-oxygenation-level-dependent imaging with brief periods of CO2 inhalation (BOLD-CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI-based biomarkers is operationally defined as inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter-rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test-retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1- to 14-day) interval. Inter-scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration-approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter-rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test-retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different-day repeat session after a short (1- to 14-day) interval. Methods were developed to allow the OCTA data to be de-identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging-based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits' potential usefulness for multicenter interventional trials in small vessel disease-related VCID.


Asunto(s)
Biomarcadores , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Neuroimagen/normas , Anciano , Angiografía , Encéfalo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Coherencia Óptica
9.
Neuroimage ; 223: 117309, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32861788

RESUMEN

Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults.


Asunto(s)
Corteza Cerebral/química , Corteza Cerebral/fisiología , Hierro/análisis , Memoria a Corto Plazo/fisiología , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/química , Vías Nerviosas/fisiología , Marcadores de Spin
10.
Neuroimage ; 195: 320-332, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953834

RESUMEN

Executive function (EF) performance in older adults has been linked with functional and structural profiles within the executive control network (ECN) and default mode network (DMN), white matter hyperintensities (WMH) burden and levels of Alzheimer's disease (AD) pathology. Here, we simultaneously explored the unique contributions of these factors to baseline and longitudinal EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent neuropsychological testing at baseline and annually for three years. Neuroimaging and AD pathology measures were collected at baseline. Separate linear regression models were used to determine which of these variables predicted composite EF scores at baseline and/or average annual change in composite ΔEF scores over the three-year follow-up period. Results demonstrated that low DMN deactivation, high ECN activation and WMH burden were the main predictors of EF scores at baseline. In contrast, poor DMN and ECN WM microstructure and higher AD pathology predicted greater annual decline in EF scores. Subsequent mediation analysis demonstrated that DMN WM microstructure uniquely mediated the relationship between AD pathology and ΔEF. These results suggest that functional activation patterns within the DMN and ECN and WMHs contribute to baseline EF while structural connectivity within these networks impact longitudinal EF performance in older adults.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Función Ejecutiva/fisiología , Vías Nerviosas/fisiopatología , Sustancia Blanca/fisiopatología , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Enfermedad de Alzheimer/fisiopatología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
12.
Neuroimage ; 131: 126-32, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26032886

RESUMEN

A growing body of evidence indicates that cardiorespiratory fitness attenuates some age-related cerebral declines. However, little is known about the role that myocardial function plays in this relationship. Brain regions with high resting metabolic rates, such as the default mode network (DMN), may be especially vulnerable to age-related declines in myocardial functions affecting cerebral blood flow (CBF). This study explored the relationship between a measure of myocardial mechanics, global longitudinal strain (GLS), and CBF to the DMN. In addition, we explored how cardiorespiratory affects this relationship. Participants were 30 older adults between the ages of 59 and 69 (mean age=63.73years, SD=2.8). Results indicated that superior cardiorespiratory fitness and myocardial mechanics were positively associated with DMN CBF. Moreover, results of a mediation analysis revealed that the relationship between GLS and DMN CBF was accounted for by individual differences in fitness. Findings suggest that benefits of healthy heart function to brain function are modified by fitness.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/fisiología , Capacidad Cardiovascular/fisiología , Circulación Cerebrovascular/fisiología , Plasticidad Neuronal/fisiología , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Anciano , Envejecimiento/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadística como Asunto
13.
Cereb Cortex ; 25(1): 138-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23960206

RESUMEN

Increased frontal cortex activation during cognitive task performance is common in aging but remains poorly understood. Here we explored patterns of age-related frontal brain activations under multiple task performance conditions and their relationship to white matter (WM) microstructure. Groups of younger (N = 28) and older (N = 33) participants completed a task-switching paradigm while functional magnetic resonance imaging (fMRI) was performed, and rested while diffusion tensor imaging was performed. Results from fMRI analyses indicated age-related increases in frontal brain activations under conditions of poorer performance in the older group (the nonswitch and switch conditions) and for a contrast in which behavioral performance was equated (older group nonswitch condition vs. younger group switch condition). Within the older adult group, higher frontal activation was associated with poorer behavioral performance under all task conditions. In 2 regions in right frontal cortex, blood oxygen level-dependent (BOLD) magnitudes were negatively correlated with WM integrity in tracts connecting these structures with other task-relevant frontoparietal and striatal regions. Our results link age-related declines in the efficiency of frontal cortex functioning with lower WM integrity in aging.


Asunto(s)
Envejecimiento/fisiología , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Sustancia Blanca/citología , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
14.
Brain Cogn ; 93: 11-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25463244

RESUMEN

Activation of left anterior inferior frontal gyrus (aLIFG) and left middle temporal gyrus (LMTG) has been observed in some functional neuroimaging studies of lexical decision but not others. It is thus unclear whether these two regions are necessary for word recognition. By applying continuous theta-burst transcranial magnetic stimulation (TMS) which temporally suppresses local brain function, we examined whether aLIFG and LMTG play causal roles in word recognition in a visual lexical decision task (LDT). Furthermore, we manipulated stimulus onset asynchrony (SOA) between prime and target to test whether these regions contribute to word recognition differently. In the LDT task, target words were preceded by semantically related primes (Related Condition; RC) or semantically unrelated words (Unrelated Condition; UC), under both short (150 ms) and long (600 ms) SOA conditions. TMS of aLIFG and LMTG significantly affected the word recognition speed compared to TMS of Vertex. Our results provide evidence that both aLIFG and LMTG contribute to word recognition speed. Furthermore, at short SOA, TMS of aLIFG or LMTG prolonged reaction time (RT). In contrast, at long SOA, there was a significant region by SOA by TMS interaction such that TMS of aLIFG prolonged RT, whereas TMS of LMTG speeded RT. These results suggest that aLIFG and LMTG may play different roles in word recognition.


Asunto(s)
Toma de Decisiones/fisiología , Lóbulo Frontal/fisiología , Lateralidad Funcional/fisiología , Tiempo de Reacción/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal , Adulto Joven
15.
J Neurosci ; 33(2): 387-96, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303919

RESUMEN

Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task-switching paradigm, including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task-switching experiment while functional magnetic resonance imaging (fMRI) was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task-switching performance. In addition, the lower blood oxygenation level-dependent response in frontal regions accounted for 82% of the variance in the bilingual task-switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes.


Asunto(s)
Envejecimiento/psicología , Cognición/fisiología , Multilingüismo , Adulto , Anciano , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Escolaridad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Pruebas de Inteligencia , Pruebas del Lenguaje , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Vocabulario , Escalas de Wechsler
16.
Geroscience ; 46(1): 265-282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37713089

RESUMEN

The blood-brain barrier (BBB) undergoes functional changes with aging which may contribute to cognitive decline. A novel, diffusion prepared arterial spin labeling-based MRI technique can measure the rate of water exchange across the BBB (kw) and may thus be sensitive to age-related alterations in water exchange at the BBB. However, studies investigating relationships between kw and cognition have reported different directions of association. Here, we begin to investigate the direction of associations between kw and cognition in different brain regions, and their possible underpinnings, by evaluating links between kw, cognitive performance, and MRI markers of cerebrovascular dysfunction and/or damage. Forty-seven healthy older adults (age range 61-84) underwent neuroimaging to obtain whole-brain measures of kw, cerebrovascular reactivity (CVR), and white matter hyperintensity (WMH) volumes. Additionally, participants completed uniform data set (Version 3) neuropsychological tests of executive function (EF) and episodic memory (MEM). Voxel-wise linear regressions were conducted to test associations between kw and cognitive performance, CVR, and WMH volumes. We found that kw in the frontoparietal brain regions was positively associated with cognitive performance but not with CVR or WMH volumes. Conversely, kw in the basal ganglia was negatively associated with cognitive performance and CVR and positively associated with regional, periventricular WMH volume. These regionally dependent associations may relate to different physiological underpinnings in the relationships between kw and cognition in neocortical versus subcortical brain regions in older adults.


Asunto(s)
Barrera Hematoencefálica , Sustancia Blanca , Humanos , Anciano , Anciano de 80 o más Años , Agua , Envejecimiento , Cognición
17.
Imaging Neurosci (Camb) ; 2: 1-15, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38947942

RESUMEN

Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation. An additional variable that measures water in extracellular space and impacts cognition, MRI free water (FW), may help explain prior findings. A total of 94 older adults without dementia (Mean age = 74.17 years, 59.6% female) underwent MRI (DP-ASL, diffusion weighted imaging (DWI)) and cognitive assessment. Mean kw was computed across the whole brain (WB), and mean white matter FW was computed across all white matter. The relationship between kw and three cognitive domains (executive function, processing speed, memory) was tested using multiple linear regression. FW was tested as a mediator of the kw-cognitive relationship using the PROCESS macro. A positive association was found between WB kw and executive function [F(4,85) = 7.81, p < .001, R2= 0.269; ß = .245, p = .014]. Further, this effect was qualified by subsequent results showing that FW was a mediator of the WB kw-executive function relationship (indirect effect results: standardized effect = .060, bootstrap confidence interval = .0006 to .1411). Results suggest that lower water exchange rate (kw) may contribute to greater total white matter (WM) FW which, in turn, may disrupt executive function. Taken together, proper fluid clearance at the BBB contributes to higher-order cognitive abilities.

18.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38293052

RESUMEN

The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function. Here we investigated age and sex-dependent trajectories of perfusion and BBB water exchange rate (kw) across the lifespan in 186 cognitively normal participants spanning the ages of 8 to 92 years old, using a non-invasive diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) MRI technique. We found that the pattern of BBB kw decline with aging varies across brain regions. Moreover, results from our DP-pCASL technique revealed a remarkable decline in BBB kw beginning in the early 60s, which was more pronounced in males. In addition, we observed sex differences in parietal and temporal regions. Our findings provide in vivo results demonstrating sex differences in the decline of BBB function with aging, which may serve as a foundation for future investigations into perfusion and BBB function in neurodegenerative and other brain disorders.

19.
Biochim Biophys Acta ; 1822(3): 416-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21803153

RESUMEN

Neuroimaging biomarkers that precede cognitive decline have the potential to aid early diagnosis of Alzheimer's disease (AD). A body of diffusion tensor imaging (DTI) work has demonstrated declines in white matter (WM) microstructure in AD and its typical prodromal state, amnestic mild cognitive impairment. The present review summarizes recent evidence suggesting that WM integrity declines are present in individuals at high AD-risk, prior to cognitive decline. The available data suggest that AD-risk is associated with WM integrity declines in a subset of tracts showing decline in symptomatic AD. Specifically, AD-risk has been associated with WM integrity declines in tracts that connect gray matter structures associated with memory function. These tracts include parahippocampal WM, the cingulum, the inferior fronto-occipital fasciculus, and the splenium of the corpus callosum. Preliminary evidence suggests that some AD-risk declines are characterized by increases of radial diffusivity, raising the possibility that a myelin-related pathology may contribute to AD onset. These findings justify future research aimed at a more complete understanding of the neurobiological bases of DTI-based declines in AD. With continued refinement of imaging methods, DTI holds promise as a method to aid identification of presymptomatic AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/patología , Fibras Nerviosas Mielínicas/patología , Encéfalo/patología , Imagen de Difusión Tensora/métodos , Humanos , Factores de Riesgo
20.
Brain Sci ; 13(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36831761

RESUMEN

Co-occurrence of beta amyloid (Aß) and white matter hyperintensities (WMHs) increase the risk of dementia and both are considered biomarkers of preclinical dementia. Moderation and mediation modeling were used to define the interplay between global and regional Aß and WMHs measures in relation to executive function (EF) and memory composite scores outcomes at baseline and after approximately 2 years across a sample of 714 clinically normal participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI 2). The moderation regression analysis showed additive effects of Aß and WMHs over baseline memory and EF scores (p = 0.401 and 0.061, respectively) and synergistic effects over follow-up EF (p < 0.05). Through mediation analysis, the data presented demonstrate that WMHs effects, mediated by global and regional amyloid burden, are responsible for baseline cognitive performance deficits in memory and EF. These findings suggest that Aß and WMHs contribute to baseline cognition independently while WMHs volumes exert effects on baseline cognitive performance directly and through influences on Aß accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA