Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 32(13-14): 868-902, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945886

RESUMEN

Annually, there are 1.6 million new cases of cancer and nearly 600,000 cancer deaths in the United States alone. The public health burden associated with these numbers has motivated enormous research efforts into understanding the root causes of cancer. These efforts have led to the recognition that between 40% and 45% of cancers are associated with preventable risk factors and, importantly, have identified specific molecular mechanisms by which these exposures modify human physiology to induce or promote cancer. The increasingly refined knowledge of these mechanisms, which we summarize here, emphasizes the need for greater efforts toward primary cancer prevention through mitigation of modifiable risk factors. It also suggests exploitable avenues for improved secondary prevention (which includes the development of therapeutics designed for cancer interception and enhanced techniques for noninvasive screening and early detection) based on detailed knowledge of early neoplastic pathobiology. Such efforts would complement the current emphasis on the development of therapeutic approaches to treat established cancers and are likely to result in far greater gains in reducing morbidity and mortality.


Asunto(s)
Neoplasias/genética , Neoplasias/prevención & control , Prevención Primaria , Detección Precoz del Cáncer , Humanos , Neoplasias/fisiopatología , Factores de Riesgo , Estados Unidos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38963567

RESUMEN

Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.

3.
Rev Physiol Biochem Pharmacol ; 185: 87-105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32761455

RESUMEN

Among the factors that have been strongly implicated in regulating cancerous transformation, the primary monocilium (cilium) has gained increasing attention. The cilium is a small organelle extending from the plasma membrane, which provides a localized hub for concentration of transmembrane receptors. These receptors transmit signals from soluble factors (including Sonic hedgehog (SHH), platelet-derived growth factor (PDGF-AA), WNT, TGFß, NOTCH, and others) that regulate cell growth, as well as mechanosensory cues provided by flow or extracellular matrix. Ciliation is regulated by cell cycle, with most cells that are in G0 (quiescent) or early G1 ciliation and cilia typically absent in G2/M cells. Notably, while most cells organized in solid tissues are ciliated, cancerous transformation induces significant changes in ciliation. Most cancer cells lose cilia; medulloblastomas and basal cell carcinomas, dependent on an active SHH pathway, rely on ciliary maintenance. Changes in cancer cell ciliation are driven by core oncogenic pathways (EGFR, KRAS, AURKA, PI3K), and importantly ciliation status regulates functionality of those pathways. Ciliation is both influenced by targeted cancer therapies and linked to therapeutic resistance; recent studies suggest ciliation may also influence cancer cell metabolism and stem cell identity. We review recent studies defining the relationship between cilia and cancer.


Asunto(s)
Proteínas Hedgehog , Neoplasias , Humanos , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Ciclo Celular/fisiología , Proliferación Celular , Neoplasias/metabolismo , Cilios/metabolismo
4.
Cell Mol Life Sci ; 80(8): 206, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37452870

RESUMEN

Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-ß, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Ratones , Animales , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Páncreas/patología , Células Acinares/patología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Neoplasias Pancreáticas
5.
BMC Genomics ; 24(1): 212, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095444

RESUMEN

BACKGROUND: Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS: Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS: Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS: Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Predisposición Genética a la Enfermedad , Replicación del ADN , Mutación de Línea Germinal , Células Germinativas
6.
J Biol Chem ; 297(2): 100996, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34302809

RESUMEN

Mantle cell lymphoma (MCL) is an especially aggressive and highly heterogeneous mature B-cell lymphoma. Heat shock protein 90 (HSP90) is considered an attractive therapeutic target in a variety of cancers, including MCL, but no HSP90 inhibitors have succeeded in the clinical trials to date. Exploring fine mechanisms of HSP90 inhibition in cancer cells may shed light on novel therapeutic strategies. Here, we found that HSP90 knockdown and continuous inhibition with ganetespib inhibited growth of MCL cells in vitro and in vivo. To our surprise, transient exposure over 12 h was almost as efficient as continuous exposure, and treatment with ganetespib for 12 h efficiently inhibited growth and induced G1 cell cycle arrest and apoptosis of MCL cells. Transcriptome analysis complemented by functional studies was performed to define critical MCL signaling pathways that are exceptionally sensitive to HSP90 inhibition and vital to cell fate. Six genes (cell division cycle 6, cell division cycle 45, minichromosome maintenance 4, minichromosome maintenance 7, RecQ-mediated genome instability 2, and DNA primase polypeptide 1) involved in DNA replication and repair were identified as consistently downregulated in three MCL cell lines after transient ganetespib treatment. E2F1, an important transcription factor essential for cell cycle progression, was identified as a ganetespib target mediating transcriptional downregulation of these six genes, and its stability was also demonstrated to be maintained by HSP90. This study identifies E2F1 as a novel client protein of HSP90 that is very sensitive and worthy of targeting and also finds that HSP90 inhibitors may be useful in combination therapies for MCL.


Asunto(s)
Reparación del ADN , Replicación del ADN , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Linfoma de Células del Manto/tratamiento farmacológico , Triazoles/farmacología , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Factor de Transcripción E2F1/genética , Humanos , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Ratones , Ratones Desnudos , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Am J Hum Genet ; 104(5): 784-801, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051112

RESUMEN

Mitochondrial dysfunction has consequences not only for cellular energy output but also for cellular signaling pathways. Mitochondrial dysfunction, often based on inherited gene variants, plays a role in devastating human conditions such as mitochondrial neuropathies, myopathies, cardiovascular disorders, and Parkinson and Alzheimer diseases. Of the proteins essential for mitochondrial function, more than 98% are encoded in the cell nucleus, translated in the cytoplasm, sorted based on the presence of encoded mitochondrial targeting sequences (MTSs), and imported to specific mitochondrial sub-compartments based on the integrated activity of a series of mitochondrial translocases, proteinases, and chaperones. This import process is typically dynamic; as cellular homeostasis is coordinated through communication between the mitochondria and the nucleus, many of the adaptive responses to stress depend on modulation of mitochondrial import. We here describe an emerging class of disease-linked gene variants that are found to impact the mitochondrial import machinery itself or to affect the proteins during their import into mitochondria. As a whole, this class of rare defects highlights the importance of correct trafficking of mitochondrial proteins in the cell and the potential implications of failed targeting on metabolism and energy production. The existence of this variant class could have importance beyond rare neuromuscular disorders, given an increasing body of evidence suggesting that aberrant mitochondrial function may impact cancer risk and therapeutic response.


Asunto(s)
Mitocondrias/patología , Enfermedades Mitocondriales/fisiopatología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Chaperonas Moleculares/genética , Transporte de Proteínas
8.
Breast Cancer Res Treat ; 177(2): 369-382, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254157

RESUMEN

PURPOSE: The serine-threonine kinases Aurora A (AURKA) and p21-activated kinase 1 (PAK1) are frequently overexpressed in breast tumors, with overexpression promoting aggressive breast cancer phenotypes and poor clinical outcomes. Besides the well-defined roles of these proteins in control of cell division, proliferation, and invasion, both kinases support MAPK kinase pathway activation and can contribute to endocrine resistance by phosphorylating estrogen receptor alpha (ERα). PAK1 directly phosphorylates AURKA and its functional partners, suggesting potential value of inhibiting both kinases activity in tumors overexpressing PAK1 and/or AURKA. Here, for the first time, we evaluated the effect of combining the AURKA inhibitor alisertib and the PAK inhibitor FRAX1036 in preclinical models of breast cancer. METHODS: Combination of alisertib and FRAX1036 was evaluated in a panel of 13 human breast tumor cell lines and BT474 xenograft model, with assessment of the cell cycle by FACS, and signaling changes by immunohistochemistry and Western blot. Additionally, we performed in silico analysis to identify markers of response to alisertib and FRAX1036. RESULTS: Pharmacological inhibition of AURKA and PAK1 synergistically decreased survival of multiple tumor cell lines, showing particular effectiveness in luminal and HER2-enriched models, and inhibited growth and ERα-driven signaling in a BT474 xenograft model. In silico analysis suggested cell lines with dependence on AURKA are most likely to be sensitive to PAK1 inhibition. CONCLUSION: Dual targeting of AURKA and PAK1 may be a promising therapeutic strategy for treatment of breast cancer, with a particular effectiveness in luminal and HER2-enriched tumor subtypes.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Quinasas p21 Activadas/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Inmunohistoquímica , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
BMC Cancer ; 19(1): 614, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234819

RESUMEN

BACKGROUND: Malignant pleural effusion (MPE) is a devastating sequela associated with cancer. Talc pleurodesis is a common treatment strategy for MPE but has been estimated to be unsuccessful in up to 20-50% of patients. Clinical failure of talc pleurodesis is thought to be due to poor dispersion. This monograph reports the development of a foam delivery system designed to more effectively coat the pleural cavity. METHODS: C57BL/6 mice were injected with Lewis lung carcinoma (LL/2) cells intrapleurally to induce MPE. The mice then received either normal saline (NS) control, foam control (F), talc slurry (TS, 2 mg/g) or talc foam (TF, 2 mg/g). Airspace volume was evaluated by CT, lungs/pleura were collected, and percent fibrosis was determined. RESULTS: The TF group had significantly better survival than the TS group (21 vs 13.5 days, p < 0.0001). The average effusion volume was less in the talc groups compared to the control group (140 vs 628 µL, p < 0.001). TF induced significant lung fibrosis (p < 0.01), similar to TS. On CT, TF significantly (p < 0.05) reduced loss of right lung volume (by 30-40%) compared to the control group. This was not seen with TS (p > 0.05). CONCLUSIONS: This report describes using a novel talc foam delivery system for the treatment of MPE. In the LL/2 model, mice treated with the TF had better survival outcomes and less reduction of lung volume than mice treated with the standard of care TS. These data provide support for translational efforts to move talc foam from animal models into clinical trials.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Derrame Pleural Maligno/terapia , Pleurodesia/métodos , Soluciones Esclerosantes/uso terapéutico , Talco/uso terapéutico , Animales , Carcinoma Pulmonar de Lewis/complicaciones , Modelos Animales de Enfermedad , Femenino , Fibrosis/diagnóstico , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pulmón/patología , Mediciones del Volumen Pulmonar , Masculino , Ratones , Ratones Endogámicos C57BL , Pleura/patología , Derrame Pleural Maligno/etiología , Soluciones Esclerosantes/administración & dosificación , Talco/administración & dosificación , Temperatura de Transición , Resultado del Tratamiento
10.
FASEB J ; 32(5): 2735-2746, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401581

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is associated with progressive formation of renal cysts, kidney enlargement, hypertension, and typically end-stage renal disease. In ADPKD, inherited mutations disrupt function of the polycystins (encoded by PKD1 and PKD2), thus causing loss of a cyst-repressive signal emanating from the renal cilium. Genetic studies have suggested ciliary maintenance is essential for ADPKD pathogenesis. Heat shock protein 90 (HSP90) clients include multiple proteins linked to ciliary maintenance. We determined that ganetespib, a clinical HSP90 inhibitor, inhibited proteasomal repression of NEK8 and the Aurora-A activator trichoplein, rapidly activating Aurora-A kinase and causing ciliary loss in vitro. Using conditional mouse models for ADPKD, we performed long-term (10 or 50 wk) dosing experiments that demonstrated HSP90 inhibition caused durable in vivo loss of cilia, controlled cystic growth, and ameliorated symptoms induced by loss of Pkd1 or Pkd2. Ganetespib efficacy was not increased by combination with 2-deoxy-d-glucose, a glycolysis inhibitor showing some promise for ADPKD. These studies identify a new biologic activity for HSP90 and support a cilia-based mechanism for cyst repression.-Nikonova, A. S., Deneka, A. Y., Kiseleva, A. A., Korobeynikov, V., Gaponova, A., Serebriiskii, I. G., Kopp, M. C., Hensley, H. H., Seeger-Nukpezah, T. N., Somlo, S., Proia, D. A., Golemis, E. A. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).


Asunto(s)
Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Triazoles/farmacología , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Cilios/genética , Cilios/metabolismo , Modelos Animales de Enfermedad , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Noqueados , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
11.
Proc Natl Acad Sci U S A ; 113(25): 6955-60, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274057

RESUMEN

Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-ß receptor 1 (TGFßR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFßRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFßR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Claudinas/antagonistas & inhibidores , Neoplasias Pulmonares/patología , Proteínas de Unión al ARN/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular Tumoral , Claudinas/fisiología , Humanos , Ratones , Metástasis de la Neoplasia
14.
Biochem Soc Trans ; 45(1): 37-49, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28202658

RESUMEN

Overexpression of the Aurora kinase A (AURKA) is oncogenic in many tumors. Many studies of AURKA have focused on activities of this kinase in mitosis, and elucidated the mechanisms by which AURKA activity is induced at the G2/M boundary through interactions with proteins such as TPX2 and NEDD9. These studies have informed the development of small molecule inhibitors of AURKA, of which a number are currently under preclinical and clinical assessment. While the first activities defined for AURKA were its control of centrosomal maturation and organization of the mitotic spindle, an increasing number of studies over the past decade have recognized a separate biological function of AURKA, in controlling disassembly of the primary cilium, a small organelle protruding from the cell surface that serves as a signaling platform. Importantly, these activities require activation of AURKA in early G1, and the mechanisms of activation are much less well defined than those in mitosis. A better understanding of the control of AURKA activity and the role of AURKA at cilia are both important in optimizing the efficacy and interpreting potential downstream consequences of AURKA inhibitors in the clinic. We here provide a current overview of proteins and mechanisms that have been defined as activating AURKA in G1, based on the study of ciliary disassembly.


Asunto(s)
Aurora Quinasa A/metabolismo , Cilios/enzimología , Mitosis , Transducción de Señal , Animales , Activación Enzimática , Fase G1 , Humanos , Modelos Biológicos , Neoplasias/enzimología
15.
Proc Natl Acad Sci U S A ; 111(35): 12859-64, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25139996

RESUMEN

Mutations inactivating the cilia-localized Pkd1 protein result in autosomal dominant polycystic kidney disease (ADPKD), a serious inherited syndrome affecting ∼ 1 in 500 people, in which accumulation of renal cysts eventually destroys kidney function. Severity of ADPKD varies throughout the population, for reasons thought to involve differences both in intragenic Pkd1 mutations and in modifier alleles. The scaffolding protein NEDD9, commonly dysregulated during cancer progression, interacts with Aurora-A (AURKA) kinase to control ciliary resorption, and with Src and other partners to influence proliferative signaling pathways often activated in ADPKD. We here demonstrate Nedd9 expression is deregulated in human ADPKD and a mouse ADPKD model. Although genetic ablation of Nedd9 does not independently influence cystogenesis, constitutive absence of Nedd9 strongly promotes cyst formation in the tamoxifen-inducible Pkd1fl/fl;Cre/Esr1(+) mouse model of ADPKD. This cystogenic effect is associated with striking morphological defects in the cilia of Pkd1(-/-);Nedd9(-/-) mice, associated with specific loss of ciliary localization of adenylase cyclase III in the doubly mutant genotype. Ciliary phenotypes imply a failure of Aurora-A activation: Compatible with this idea, Pkd1(-/-);Nedd9(-/-) mice had ciliary resorption defects, and treatment of Pkd1(-/-) mice with a clinical Aurora-A kinase inhibitor exacerbated cystogenesis. In addition, activation of the ADPKD-associated signaling effectors Src, Erk, and the mTOR effector S6 was enhanced, and Ca(2+) response to external stimuli was reduced, in Pkd1(-/-);Nedd9(-/-) versus Pkd1(-/-) mice. Together, these results indicated an important modifier action of Nedd9 on ADPKD pathogenesis involving failure to activate Aurora-A.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Señalización del Calcio/fisiología , Riñón/patología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Cilios/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/citología , Femenino , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Triazoles/farmacología
16.
Gastroenterology ; 149(7): 1872-1883.e9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26344056

RESUMEN

BACKGROUND & AIMS: DNA structural lesions are prevalent in sporadic colorectal cancer. Therefore, we proposed that gene variants that predispose to DNA double-strand breaks (DSBs) would be found in patients with familial colorectal carcinomas of an undefined genetic basis (UFCRC). METHODS: We collected primary T cells from 25 patients with UFCRC and matched patients without colorectal cancer (controls) and assayed for DSBs. We performed exome sequence analyses of germline DNA from 20 patients with UFCRC and 5 undiagnosed patients with polyposis. The prevalence of identified variants in genes linked to DNA integrity was compared with that of individuals without a family history of cancer. The effects of representative variants found to be associated with UFCRC was confirmed in functional assays with HCT116 cells. RESULTS: Primary T cells from most patients with UFCRC had increased levels of the DSB marker γ(phosphorylated)histone2AX (γH2AX) after treatment with DNA damaging agents, compared with T cells from controls (P < .001). Exome sequence analysis identified a mean 1.4 rare variants per patient that were predicted to disrupt functions of genes relevant to DSBs. Controls (from public databases) had a much lower frequency of variants in the same genes (P < .001). Knockdown of representative variant genes in HCT116 CRC cells increased γH2AX. A detailed analysis of immortalized patient-derived B cells that contained variants in the Werner syndrome, RecQ helicase-like gene (WRN, encoding T705I), and excision repair cross-complementation group 6 (ERCC6, encoding N180Y) showed reduced levels of these proteins and increased DSBs, compared with B cells from controls. This phenotype was rescued by exogenous expression of WRN or ERCC6. Direct analysis of the recombinant variant proteins confirmed defective enzymatic activities. CONCLUSIONS: These results provide evidence that defects in suppression of DSBs underlie some cases of UFCRC; these can be identified by assays of circulating lymphocytes. We specifically associated UFCRC with variants in WRN and ERCC6 that reduce the capacity for repair of DNA DSBs. These observations could lead to a simple screening strategy for UFCRC, and provide insight into the pathogenic mechanisms of colorectal carcinogenesis.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Roturas del ADN de Doble Cadena , Variación Genética , Linfocitos T/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Biología Computacional , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Bases de Datos Genéticas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exoma , Femenino , Frecuencia de los Genes , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Células HCT116 , Herencia , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutágenos/farmacología , Fenotipo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Análisis de Secuencia de ADN , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transfección , Regulación hacia Arriba , Helicasa del Síndrome de Werner
17.
Proc Natl Acad Sci U S A ; 110(31): 12786-91, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858461

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic syndrome with an incidence of 1:500 in the population, arising from inherited mutations in the genes for polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2). Typical onset is in middle age, with gradual replacement of renal tissue with thousands of fluid-filled cysts, resulting in end-stage renal disease requiring dialysis or kidney transplantation. There currently are no approved therapies to slow or cure ADPKD. Mutations in the PKD1 and PKD2 genes abnormally activate multiple signaling proteins and pathways regulating cell proliferation, many of which we observe, through network construction, to be regulated by heat shock protein 90 (HSP90). Inhibiting HSP90 with a small molecule, STA-2842, induces the degradation of many ADPKD-relevant HSP90 client proteins in Pkd1(-/-) primary kidney cells and in vivo. Using a conditional Cre-mediated mouse model to inactivate Pkd1 in vivo, we find that weekly administration of STA-2842 over 10 wk significantly reduces initial formation of renal cysts and kidney growth and slows the progression of these phenotypes in mice with preexisting cysts. These improved disease phenotypes are accompanied by improved indicators of kidney function and reduced expression and activity of HSP90 clients and their effectors, with the degree of inhibition correlating with cystic expansion in individual animals. Pharmacokinetic analysis indicates that HSP90 is overexpressed and HSP90 inhibitors are selectively retained in cystic versus normal kidney tissue, analogous to the situation observed in solid tumors. These results provide an initial justification for evaluating HSP90 inhibitors as therapeutic agents for ADPKD.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteolisis , Resorcinoles/metabolismo , Transducción de Señal , Triazoles/metabolismo , Animales , Quistes/tratamiento farmacológico , Quistes/genética , Quistes/metabolismo , Quistes/patología , Modelos Animales de Enfermedad , Proteínas HSP90 de Choque Térmico/genética , Riñón/patología , Ratones , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
18.
BMC Cancer ; 15: 436, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26016476

RESUMEN

BACKGROUND: Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. METHODS: Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. RESULTS: Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. CONCLUSIONS: These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Proteína Adaptadora GRB2/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cetuximab/farmacología , Evaluación Preclínica de Medicamentos , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosforilación/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal
19.
Physiol Genomics ; 46(19): 699-724, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25096367

RESUMEN

Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-ß (TGFB1), NEDD9/HEF1, ß-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.


Asunto(s)
Biología Computacional/métodos , Biología Computacional/tendencias , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pulmonares/fisiopatología , Modelos Biológicos , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Cadherinas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Fosfoproteínas/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA