Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Macromol Rapid Commun ; 42(11): e2100061, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33759277

RESUMEN

Dynamically inhomogeneous polymer systems exhibit interphases with mobility gradients. These are believed to play key roles in the material's performance. A prominent example is particle-filled rubber, a special case of a crosslinked polymer nanocomposite, where favorable rubber-filler interactions may give rise to a nanoscale immobilized layer around the filler, including regions of intermediate mobility. Such intermediate domains may either form a separate shell-like layer or be a manifestation of dynamic heterogeneities, in which case the intermediately mobile material would be dispersed in the form of nanometer-sized subdomains. In this contribution, bidirectional proton NMR spin diffusion (SD) experiments applied to silica-filled acrylate rubber are combined with numerical simulations to provide microscopic insights into this question. While model calculations for different scenarios fit the given data similarly well for longer SD mixing time, the short-time data do support the presence of dynamic heterogeneities.


Asunto(s)
Nanocompuestos , Polímeros , Interfase , Goma , Dióxido de Silicio
2.
Mol Pharm ; 16(5): 2214-2225, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30920843

RESUMEN

Drug-polymer interactions have a substantial impact on stability and performance of amorphous solid dispersions (ASD) but are difficult to analyze. Whereas there are many screening methods described for polymer selection based for example on glass forming ability, drug-polymer miscibility, supersaturation, or inhibition of recrystallization, the distinct detection of physico-chemical interactions mostly lacks miniaturized techniques. This work presents an interaction screening assessing the relative viscosity increase between highly concentrated polymer solutions with and without the model drug ketoconazole (KTZ). The fluorescent molecular rotor 9-(2-carboxy-2-cyanovinyl)julolidine was added to the solutions in a miniaturized setup in µL-scale. Due to its environment-sensitive emission behavior, the integrated fluorescence intensity can be used as a viscosity dye within this screening approach (FluViSc). Differences in relative viscosity increases through addition of KTZ were proposed to rank polymers regarding KTZ-polymer interactions. Absolute viscosities were measured with a cone-plate rheometer as a complimentary method and supported the results acquired by the FluViSc. Solid-state nuclear magnetic resonance (ss-NMR) relaxation time measurements and Raman spectroscopy were utilized to investigate drug-polymer interactions at a molecular level. Whereas Raman spectroscopy was not suited to reveal KTZ-polymer interactions, ss-NMR relaxation time measurements differentiated between the selected polymeric carriers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinylpyrrolidone vinyl acetate 60:40 (PVP-VA64). Interactions were detected for HPMCAS/KTZ ASD while there was no hint for interactions between KTZ and PVP-VA64. These results were in correlation with the FluViSc. The findings were correlated with the dissolution performance of ASD and found to be predictive for supersaturation and inhibition of precipitation during dissolution.


Asunto(s)
Composición de Medicamentos/métodos , Cetoconazol/química , Polímeros/química , Viscosidad , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Cristalización , Portadores de Fármacos/química , Liberación de Fármacos , Estabilidad de Medicamentos , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Pirrolidinas/química , Solubilidad , Espectrometría Raman , Compuestos de Vinilo/química , Difracción de Rayos X
3.
J Chem Phys ; 146(20): 203303, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28571377

RESUMEN

A series of poly(ethylene oxide) nanocomposites with spherical silica was studied by proton NMR spectroscopy, identifying and characterizing reduced-mobility components arising from either room-temperature lateral adsorption or possibly end-group mediated high-temperature bonding to the silica surface. The study complements earlier neutron-scattering results for some of the samples. The estimated thickness of a layer characterized by significant internal mobility resembling backbone rotation ranges from 2 nm for longer (20 k) chains adsorbed on 42 nm diameter particles to 0.5 nm and below for shorter (2 k) chains on 13 nm particles. In the latter case, even lower adsorbed amounts are found when hydroxy endgroups are replaced by methyl endgroups. Both heating and water addition do not lead to significant changes of the observables, in contrast to other systems such as acrylate polymers adsorbed to silica, where temperature- and solvent-induced softening associated with a glass transition temperature gradient was evidenced. We highlight the actual agreement and complementarity of NMR and neutron scattering results, with the earlier ambiguities mainly arising from different sensitivities to the component fractions and the details of their mobility.

4.
Phys Chem Chem Phys ; 18(8): 6153-63, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26847581

RESUMEN

1,2,3-Triazole (TR) is a good proton conductor which is tidely related to formation of a hydrogen bond network along the N-HN trajectory and its self-dissociation into diH-1,2,3-triazolium and 1,2,3-triazolate. To gain a deeper understanding, the proton conductivity of TR is measured by impedance spectroscopy (IS) across its melting temperature and an additionally discovered solid-solid phase transition. The orthorhombic high temperature phase and the monoclinic low temperature modification are investigated by polarized optical microscopy, DSC- and WAXS measurements. Furthermore, the diffusion coefficients of TR are determined from IS data and measured by (1)H PFG NMR spectroscopy in the melt which allows for separate evaluation of contributions of proton hopping across the hydrogen bond network and the vehicle mechanism to the proton conductivity where the vehicles are defined as charged species generated by TR self-dissociation. Finally, the degree of dissociation of TR is calculated and the influence of the self-dissociation of TR on the proton conductivity is discussed in the context of the dielectric constant.

5.
Solid State Nucl Magn Reson ; 72: 50-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26404771

RESUMEN

We review basic principles of low-resolution proton NMR spin diffusion experiments, relying on mobility differences in nm-sized phases of inhomogeneous organic materials such as block-co- or semicrystalline polymers. They are of use for estimates of domain sizes and insights into nanometric dynamic inhomogeneities. Experimental procedures and limitations of mobility-based signal decomposition/filtering prior to spin diffusion are addressed on the example of as yet unpublished data on semicrystalline poly(ϵ-caprolactone), PCL. Specifically, we discuss technical aspects of the quantitative, dead-time free detection of rigid-domain signals by aid of the magic-sandwich echo (MSE), and magic-and-polarization-echo (MAPE) and double-quantum (DQ) magnetization filters to select rigid and mobile components, respectively. Such filters are of general use in reliable fitting approaches for phase composition determinations. Spin diffusion studies at low field using benchtop instruments are challenged by rather short (1)H T1 relaxation times, which calls for simulation-based analyses. Applying these, in combination with domain sizes as determined by small-angle X-ray scattering, we have determined spin diffusion coefficients D for PCL (0.34, 0.19 and 0.032nm(2)/ms for crystalline, interphase and amorphous parts, respectively). We further address thermal-history effects related to secondary crystallization. Finally, the state of knowledge concerning the connection between D values determined locally at the atomic level, using (13)C detection and CP- or REDOR-based "(1)H hole burning" procedures, and those obtained by calibration experiments, is summarized. Specifically, the non-trivial dependence of D on the magic-angle spinning (MAS) frequency, with a minimum under static and a local maximum under moderate-MAS conditions, is highlighted.

6.
J Phys Chem B ; 127(9): 2066-2082, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36820510

RESUMEN

Nanocomposite solid polymer electrolytes (NSPEs) with PEO as the matrix and (i) GO or (ii) GO-graft-PEG6k or (iii) GO-graft-PEG6k-block-P(MA-POSS) as nanofillers have been fabricated to elucidate the impact of the filler morphology on the lithium ion conductivity. GO-graft-PEG6k was obtained by grafting PEG6k onto GO via esterification. GO-graft-PEG6k-block-P(MA-POSS) was prepared via surface-initiated atom transfer radical polymerization. Fourier-transform infrared spectroscopy revealed enhanced salt dissociation and complexation between the filler and PEO host that could be attributed to Lewis acid-base interactions. Electrochemical impedance spectroscopy revealed the improved ion conductivity of the fabricated NSPEs as compared with the pristine PEO-LiClO4. As an example, at 50 °C, the ion conductivity increased to 4.01 × 10-5 and 6.31 × 10-5 S cm-1 with 0.3% GO and 0.3% GO-graft-PEG6k, respectively, from 2.36 × 10-5 S cm-1 of PEO-LiClO4, suggesting that the filler with brush-like architecture (GO-graft-PEG6k) is more efficient in enhancing the ion conductivity. Further increase in filler content resulted in lowering of the ion conductivity that could be ascribed to aggregation of the filler. The most dramatic impact on conductivity was observed with the incorporation of brush-like GO-graft-PEG6k-block-P(MA-POSS) as a nanofiller (3.0 × 10-4 S cm-1 at 50 °C with 1.0 wt % filler content). The increase in ion conductivity in the current systems, as opposed to the conventional view, could not be correlated with the content of the amorphous phase of the matrix. The conduction mechanism is still unclear; nevertheless, it could be assumed that in addition to the ion conduction through the PEO matrix, the filler forms additional low-energy ion conducting channels at its interface with the matrix. The pendent POSS nanocages of GO-graft-PEG6k-block-P(MAPOSS) might probably increase the free volume at the interface with the matrix that is associated with higher chain and ion mobility, thus further enhancing the ion conductivity as compared with GO and GO-graft-PEG6k. The faster ion dynamics in 1.0 wt % GO-graft-PEG6k-block-P(MAPOSS) NSPEs has also been verified by the dielectric relaxation studies. Thus, integration of both the PEG and POSS nanocages into GO-grafted brush-like architecture offers a new tool for tuning the lithium ion conductivity for potential Li ion battery applications.

7.
Gels ; 7(1)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672681

RESUMEN

Polymer networks were prepared by Steglich esterification using poly(sorbitol adipate) (PSA) and poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG12) copolymer. Utilizing multi-hydroxyl functionalities of PSA, poly(ethylene glycol) (PEG) was first grafted onto a PSA backbone. Then the cross-linking of PSA or PSA-g-mPEG12 was carried out with disuccinyl PEG of different molar masses (Suc-PEGn-Suc). Polymers were characterized through nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). The degree of swelling of networks was investigated through water (D2O) uptake studies, while for detailed examination of their structural dynamics, networks were studied using 13C magic angle spinning NMR (13C MAS NMR) spectroscopy, 1H double quantum NMR (1H DQ NMR) spectroscopy, and 1H pulsed field gradient NMR (1H PFG NMR) spectroscopy. These solid state NMR results revealed that the networks were composed of a two component structure, having different dipolar coupling constants. The diffusion of solvent molecules depended on the degree of swelling that was imparted to the network by the varying chain length of the PEG based cross-linking agent.

8.
Materials (Basel) ; 11(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223444

RESUMEN

1,2,3-Triazolium salts are an important class of materials with a plethora of sophisticated applications. A series of three novel 1,3-dimethyl-1,2,3-triazolium salts with fluorine, containing anions of various size, is synthesized by methylation of 1,2,3-triazole. Their ion conductivity is measured by impedance spectroscopy, and the corresponding ionicities are determined by diffusion coefficients obtained from ¹H and 19F pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy data, revealing that the anion strongly influences their ion conductive properties. Since the molar ion conductivities and ionicities of the 1,3-dimethyl-1,2,3-triazolium salts are enhanced in comparison to other 1,2,3-triazolium salts with longer alkyl substituents, they are promising candidates for applications as electrolytes in electrochemical devices.

9.
J Phys Chem B ; 121(17): 4620-4630, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28398054

RESUMEN

The chain mobility in crystals of a homopolymer of poly(ethylene oxide) (PEO) with 22 monomer units (PEO22) is compared with that of a PEO having the identical number of monomer units but additionally a 1,4-disubstituted 1,2,3-triazole (TR) point defect in the middle of the chain (PEO11-TR-PEO11). In crystals of PEO22, the characteristic αc-relaxation (helix jumps) is detected and the activation energy of this process is calculated from the pure crystalline 1H FIDs to 67 kJ/mol. PEO11-TR-PEO11 exhibits a more complex behavior, i.e. a transition into the high temperature phase HTPh is noticed during heating in the temperature range between -5 and 10 °C which is attributed to the incorporation of the TR ring into the crystalline lamellae. The crystal mobility of the low temperature phase LTPh of PEO11-TR-PEO11 is in good agreement with PEO22 since helical jump motions could also be detected by analysis of the 1H FIDs and the corresponding values of their second moments M2. In contrast, the high temperature phase of PEO11-TR-PEO11 shows a completely different behavior of the crystal mobility. The crystalline PEO chains are rigid in this HTPh on the time scale of both, the 1H time-domain technique and in 13C MAS CODEX NMR spectroscopy, i.e. the αc-mobility of PEO in the HTPh of PEO11-TR-PEO11 is completely suppressed and the PEO11 chains are converted into a crystal-fixed polymer due to the incorporation of the TR rings into the crystal structure. However, the TR defect of PEO11-TR-PEO11 shows in the HTPh characteristic π-flip motions with an Arrhenius type activation energy of 223 kJ/mol measured by dielectric relaxation spectroscopy. This motion cannot be observed by corresponding 13C MAS CODEX NMR measurements due to an interfering spin-dynamic effect.

10.
ACS Macro Lett ; 6(11): 1207-1211, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35650796

RESUMEN

Many text books and publications do not focus on the necessity of chain tilting in crystalline lamellae of oligomers and polymers, a fundamental aspect of their crystallization already discussed by Flory. Herein we investigate the chain tilt of ethylene oxide oligomers (EOs) containing various midchain defects by WAXS, SAXS and solid state 13C MAS NMR spectroscopy. At low temperatures, one out of the two EO chains of EO9-meta-EO9 and EO11-TR-EO11 containing a 1,3-disubstituted benzene or a 1,4-disubstituted 1,2,3-triazole defect in central position of the oligomer chain forms crystals and the other EO chain as well as the defect remain in the amorphous phase. The aromatic midchain defect of these two oligomers can be incorporated into the crystalline lamella upon heating below Tm. Then, the adjoining amorphous EO chain crosses from the lamellae to the amorphous regions at an angle ξ, which is preordained by the substitution pattern of the aromatic defect, revealing that the chain tilt angle ranges between 36° ≤ ϕ ≤ 60°.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA