Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Biol ; 21(7): e3002184, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463136

RESUMEN

The use of English as the common language of science represents a major impediment to maximising the contribution of non-native English speakers to science. Yet few studies have quantified the consequences of language barriers on the career development of researchers who are non-native English speakers. By surveying 908 researchers in environmental sciences, this study estimates and compares the amount of effort required to conduct scientific activities in English between researchers from different countries and, thus, different linguistic and economic backgrounds. Our survey demonstrates that non-native English speakers, especially early in their careers, spend more effort than native English speakers in conducting scientific activities, from reading and writing papers and preparing presentations in English, to disseminating research in multiple languages. Language barriers can also cause them not to attend, or give oral presentations at, international conferences conducted in English. We urge scientific communities to recognise and tackle these disadvantages to release the untapped potential of non-native English speakers in science. This study also proposes potential solutions that can be implemented today by individuals, institutions, journals, funders, and conferences. Please see the Supporting information files (S2-S6 Text) for Alternative Language Abstracts and Figs 5 and 6.


Asunto(s)
Lenguaje , Lingüística , Humanos , Encuestas y Cuestionarios
2.
PLoS Biol ; 19(10): e3001296, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34618803

RESUMEN

The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Lenguaje , Ciencia , Animales , Geografía , Publicaciones
3.
Glob Chang Biol ; 25(7): 2446-2458, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30985960

RESUMEN

Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old-growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal-temperate forests of eastern North America. From pre-existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (>170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world.


Asunto(s)
Carbono , Ecosistema , Teorema de Bayes , Cambio Climático , América del Norte
4.
Ecol Lett ; 21(5): 745-759, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29516604

RESUMEN

High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success.


Asunto(s)
Especies Introducidas , Filogenia , Plantas , Teorema de Bayes
5.
Sustain Sci ; 18(2): 771-789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37012996

RESUMEN

The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996-2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01166-3.

6.
Sci Total Environ ; 775: 144441, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33715862

RESUMEN

We contend that the exclusive focus on the English language in scientific research might hinder effective communication between scientists and practitioners or policy makers whose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages. We compared it with equivalent data from English documents (i.e., the InvaCost database, the most up-to-date repository of invasion costs globally). The comparison of both databases (~7500 entries in total) revealed that non-English sources: (i) capture a greater amount of data than English sources alone (2500 vs. 2396 cost entries respectively); (ii) add 249 invasive species and 15 countries to those reported by English literature, and (iii) increase the global cost estimate of invasions by 16.6% (i.e., US$ 214 billion added to 1.288 trillion estimated from the English database). Additionally, 2712 cost entries - not directly comparable to the English database - were directly obtained from practitioners, revealing the value of communication between scientists and practitioners. Moreover, we demonstrated how gaps caused by overlooking non-English data resulted in significant biases in the distribution of costs across space, taxonomic groups, types of cost, and impacted sectors. Specifically, costs from Europe, at the local scale, and particularly pertaining to management, were largely under-represented in the English database. Thus, combining scientific data from English and non-English sources proves fundamental and enhances data completeness. Considering non-English sources helps alleviate biases in understanding invasion costs at a global scale. Finally, it also holds strong potential for improving management performance, coordination among experts (scientists and practitioners), and collaborative actions across countries. Note: non-English versions of the abstract and figures are provided in Appendix S5 in 12 languages.


Asunto(s)
Especies Introducidas , Lenguaje , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA