Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 715-42, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27050154

RESUMEN

Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.


Asunto(s)
Chaperonina 60/química , Proteínas del Choque Térmico HSP110/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico Pequeñas/química , Proteínas Mitocondriales/química , Desplegamiento Proteico , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Expresión Génica , Proteínas del Choque Térmico HSP110/genética , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Agregado de Proteínas , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo
2.
Trends Biochem Sci ; 47(10): 824-838, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660289

RESUMEN

Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.


Asunto(s)
Calor , Calidad de Vida , Cambio Climático , Respuesta al Choque Térmico , Humanos
3.
Nat Chem Biol ; 19(2): 198-205, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36266349

RESUMEN

Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluorescent domains, which upon denaturation formed a discrete population of small aggregates. Combining Förster resonance energy transfer and enzymatic activity measurements provided unprecedented details on the aggregated, unfolded, Hsp70-bound and native MLucV conformations. The Hsp70 mechanism first involved ATP-fueled disaggregation and unfolding of the stable pre-aggregated substrate, which stretched MLucV beyond simply unfolded conformations, followed by native refolding. The ATP-fueled unfolding and refolding action of Hsp70 on MLucV aggregates could accumulate native MLucV species under elevated denaturing temperatures highly adverse to the native state. These results unambiguously exclude binding and preventing of aggregation from the non-equilibrium mechanism by which Hsp70 converts stable aggregates into metastable native proteins.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Pliegue de Proteína , Proteínas HSP70 de Choque Térmico/química , Chaperonas Moleculares/química , Luciferasas/metabolismo , Adenosina Trifosfato , Desnaturalización Proteica , Desplegamiento Proteico
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001607

RESUMEN

Across the Tree of Life (ToL), the complexity of proteomes varies widely. Our systematic analysis depicts that from the simplest archaea to mammals, the total number of proteins per proteome expanded ∼200-fold. Individual proteins also became larger, and multidomain proteins expanded ∼50-fold. Apart from duplication and divergence of existing proteins, completely new proteins were born. Along the ToL, the number of different folds expanded ∼5-fold and fold combinations ∼20-fold. Proteins prone to misfolding and aggregation, such as repeat and beta-rich proteins, proliferated ∼600-fold and, accordingly, proteins predicted as aggregation-prone became 6-fold more frequent in mammalian compared with bacterial proteomes. To control the quality of these expanding proteomes, core chaperones, ranging from heat shock proteins 20 (HSP20s) that prevent aggregation to HSP60, HSP70, HSP90, and HSP100 acting as adenosine triphosphate (ATP)-fueled unfolding and refolding machines, also evolved. However, these core chaperones were already available in prokaryotes, and they comprise ∼0.3% of all genes from archaea to mammals. This challenge-roughly the same number of core chaperones supporting a massive expansion of proteomes-was met by 1) elevation of messenger RNA (mRNA) and protein abundances of the ancient generalist core chaperones in the cell, and 2) continuous emergence of new substrate-binding and nucleotide-exchange factor cochaperones that function cooperatively with core chaperones as a network.


Asunto(s)
Evolución Molecular , Proteínas HSP70 de Choque Térmico/genética , Agregado de Proteínas/genética , Proteoma/genética , Adenosina Trifosfato/metabolismo , Animales , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Hongos/genética , Hongos/metabolismo , Expresión Génica , Ontología de Genes , Proteínas HSP70 de Choque Térmico/metabolismo , Mamíferos , Anotación de Secuencia Molecular , Filogenia , Plantas/genética , Plantas/metabolismo , Pliegue de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Phys Chem Chem Phys ; 24(47): 29176-29185, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36444947

RESUMEN

Partially charged chiral molecules act as spin filters, with preference for electron transport toward one type of spin ("up" or "down"), depending on their handedness. This effect is named the chiral induced spin selectivity (CISS) effect. A consequence of this phenomenon is spin polarization concomitant with electric polarization in chiral molecules. These findings were shown by adsorbing chiral molecules on magnetic surfaces and investigating the spin-exchange interaction between the surface and the chiral molecule. This field of study was developed using artificial chiral molecules. Here we used such magnetic surfaces to explore the importance of the intrinsic chiral properties of proteins in determining their stability. First, proteins were adsorbed on paramagnetic and ferromagnetic nanoparticles in a solution, and subsequently urea was gradually added to induce unfolding. The structural stability of proteins was assessed using two methods: bioluminescence measurements used to monitor the activity of the Luciferase enzyme, and fast spectroscopy detecting the distance between two chromophores implanted at the termini of a Barnase core. We found that interactions with magnetic materials altered the structural and functional resilience of the natively folded proteins, affecting their behavior under varying mild denaturing conditions. Minor structural disturbances at low urea concentrations were impeded in association with paramagnetic nanoparticles, whereas at higher urea concentrations, major structural deformation was hindered in association with ferromagnetic nanoparticles. These effects were attributed to spin exchange interactions due to differences in the magnetic imprinting properties of each type of nanoparticle. Additional measurements of proteins on macroscopic magnetic surfaces support this conclusion. The results imply a link between internal spin exchange interactions in a folded protein and its structural and functional integrity on magnetic surfaces. Together with the accumulating knowledge on CISS, our findings suggest that chirality and spin exchange interactions should be considered as additional factors governing protein structures.


Asunto(s)
Imanes , Nanopartículas , Estabilidad Proteica , Electricidad , Transporte de Electrón
7.
Plant Cell Environ ; 44(7): 2117-2133, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33314263

RESUMEN

At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.


Asunto(s)
Bryopsida/fisiología , Proteínas de Plantas/metabolismo , Termotolerancia/fisiología , Bryopsida/citología , Cromatografía Liquida , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas del Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteómica , Espectrometría de Masas en Tándem , Flujo de Trabajo
8.
Haematologica ; 106(6): 1519-1534, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33832207

RESUMEN

Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Animales , Eritroblastos , Eritrocitos , Eritropoyesis , Humanos
10.
Nat Chem Biol ; 14(4): 388-395, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507388

RESUMEN

During and after protein translation, molecular chaperones require ATP hydrolysis to favor the native folding of their substrates and, under stress, to avoid aggregation and revert misfolding. Why do some chaperones need ATP, and what are the consequences of the energy contributed by the ATPase cycle? Here, we used biochemical assays and physical modeling to show that the bacterial chaperones GroEL (Hsp60) and DnaK (Hsp70) both use part of the energy from ATP hydrolysis to restore the native state of their substrates, even under denaturing conditions in which the native state is thermodynamically unstable. Consistently with thermodynamics, upon exhaustion of ATP, the metastable native chaperone products spontaneously revert to their equilibrium non-native states. In the presence of ATPase chaperones, some proteins may thus behave as open ATP-driven, nonequilibrium systems whose fate is only partially determined by equilibrium thermodynamics.


Asunto(s)
Adenosina Trifosfato/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Malato Deshidrogenasa/química , Proteínas/química , Adenosina Trifosfatasas/química , Animales , Mitocondrias/metabolismo , Chaperonas Moleculares/química , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Porcinos , Termodinámica
11.
Curr Genet ; 64(1): 177-181, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28936749

RESUMEN

Cadmium is a highly poisonous metal and a human carcinogen, but the molecular mechanisms underlying its cellular toxicity are not fully understood. Recent findings in yeast cells indicate that cadmium exerts its deleterious effects by inducing widespread misfolding and aggregation of nascent proteins. Here, we discuss this novel mode of toxic heavy metal action and propose a mechanism by which molecular chaperones may reduce the damaging effects of heavy metal ions on protein structures.


Asunto(s)
Agregado de Proteínas , Agregación Patológica de Proteínas , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Intoxicación por Metales Pesados , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Trends Biochem Sci ; 37(3): 118-25, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22236506

RESUMEN

In plants, the heat stress response (HSR) is highly conserved and involves multiple pathways, regulatory networks and cellular compartments. At least four putative sensors have recently been proposed to trigger the HSR. They include a plasma membrane channel that initiates an inward calcium flux, a histone sensor in the nucleus, and two unfolded protein sensors in the endoplasmic reticulum and the cytosol. Each of these putative sensors is thought to activate a similar set of HSR genes leading to enhanced thermotolerance, but the relationship between the different pathways and their hierarchical order is unclear. In this review, we explore the possible involvement of different thermosensors in the plant response to warming and heat stress.


Asunto(s)
Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Respuesta al Choque Térmico/genética , Redes y Vías Metabólicas , Fenómenos Fisiológicos de las Plantas , Arabidopsis/fisiología , Canales de Calcio/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Respuesta al Choque Térmico/fisiología , Histonas/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Temperatura , Respuesta de Proteína Desplegada/fisiología
13.
Proc Natl Acad Sci U S A ; 110(18): 7199-204, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23584019

RESUMEN

Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.


Asunto(s)
Adenosina Trifosfato/farmacología , Biocatálisis/efectos de los fármacos , Chaperonina 60/metabolismo , Chaperonina con TCP-1/metabolismo , Péptidos/metabolismo , Replegamiento Proteico/efectos de los fármacos , Desplegamiento Proteico/efectos de los fármacos , Animales , Apoproteínas/metabolismo , Bovinos , Chaperonina 10/metabolismo , Congelación , Modelos Moleculares , Estructura Cuaternaria de Proteína , Especificidad por Sustrato/efectos de los fármacos , Sus scrofa , Tiosulfato Azufretransferasa/metabolismo
14.
J Biol Chem ; 289(9): 6110-9, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24415765

RESUMEN

In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.


Asunto(s)
Proteínas Bacterianas/química , Glucosafosfato Deshidrogenasa/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Pliegue de Proteína , Synechococcus/química , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Desnaturalización Proteica , Synechococcus/genética , Synechococcus/metabolismo , Urea/química
15.
Plant Cell ; 24(8): 3333-48, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22904147

RESUMEN

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.


Asunto(s)
Adaptación Biológica , Arabidopsis/fisiología , Bryopsida/fisiología , Membrana Celular/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Calcio/metabolismo , Membrana Celular/genética , Biología Computacional , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Citoplasma/genética , Citoplasma/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Respuesta al Choque Térmico , Calor , Datos de Secuencia Molecular , Fenotipo , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Factores de Tiempo
16.
Cell Mol Life Sci ; 71(17): 3311-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24760129

RESUMEN

By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed "holdases". Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.


Asunto(s)
Chaperonas Moleculares/fisiología , Pliegue de Proteína , Adenosina Trifosfato/fisiología , Animales , Catálisis , Proteínas de Escherichia coli/fisiología , Proteínas de Choque Térmico/fisiología , Humanos , Modelos Biológicos , Chaperonas Moleculares/química , Enfermedades Neurodegenerativas/metabolismo , Isomerasa de Peptidilprolil/fisiología , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Deficiencias en la Proteostasis/metabolismo , Estrés Fisiológico
17.
J Biol Chem ; 288(29): 21399-21411, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23737532

RESUMEN

Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.


Asunto(s)
Adenosina Trifosfato/farmacología , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/química , Péptidos/metabolismo , Desplegamiento Proteico/efectos de los fármacos , Biocatálisis/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Hidrólisis/efectos de los fármacos , Luciferasas/metabolismo , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Replegamiento Proteico/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Solubilidad , Especificidad por Sustrato/efectos de los fármacos , Temperatura , Tripsina/farmacología
18.
J Cell Sci ; 125(Pt 21): 5073-83, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22946053

RESUMEN

Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.


Asunto(s)
Arsenitos/farmacología , Proteínas de Choque Térmico/metabolismo , Pliegue de Proteína/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Luciferasas de Luciérnaga/biosíntesis , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores
19.
Cell Stress Chaperones ; 29(2): 338-348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521349

RESUMEN

The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Unión Proteica , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo
20.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38320449

RESUMEN

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Polonia , Proteínas del Choque Térmico HSP40/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA