RESUMEN
The development of safe subunit vaccines requires adjuvants that augment immunogenicity of non-replicating protein-based antigens. Current vaccines against infectious diseases preferentially induce protective antibodies driven by adjuvants such as alum. However, the contribution of antibody to host defense is limited for certain classes of infectious diseases such as fungi, whereas animal studies and clinical observations implicate cellular immunity as an essential component of the resolution of fungal pathogens. Here, we decipher the structural bases of a newly identified glycoprotein ligand of Dectin-2 with potent adjuvancy, Blastomyces endoglucanase-2 (Bl-Eng2). We also pinpoint the developmental steps of antigen-specific CD4+ and CD8+ T responses augmented by Bl-Eng2 including expansion, differentiation and tissue residency. Dectin-2 ligation led to successful systemic and mucosal vaccination against invasive fungal infection and Influenza A infection, respectively. O-linked glycans on Bl-Eng2 applied at the skin and respiratory mucosa greatly augment vaccine subunit- induced protective immunity against lethal influenza and fungal pulmonary challenge.
Asunto(s)
Anticuerpos Antivirales/inmunología , Blastomyces/inmunología , Vacunas Fúngicas/inmunología , Infecciones por Orthomyxoviridae/inmunología , Adyuvantes Inmunológicos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Celulasa/inmunología , Vacunas contra la Influenza/inmunologíaRESUMEN
IMPORTANCE: Severe influenza is a risk factor for fatal invasive pulmonary aspergillosis; however, the mechanistic basis for the lethality is unclear. Utilizing an influenza-associated pulmonary aspergillosis (IAPA) model, we found that mice infected with influenza A virus followed by Aspergillus fumigatus had 100% mortality when superinfected during the early stages of influenza but survived at later stages. While superinfected mice had dysregulated pulmonary inflammatory responses compared to controls, they had neither increased inflammation nor extensive fungal growth. Although influenza-infected mice had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus, influenza did not affect the ability of neutrophils to clear the fungi. Our data suggest that the lethality seen in our model of IAPA is multifactorial with dysregulated inflammation being a greater contributor than uncontrollable microbial growth. If confirmed in humans, our findings provide a rationale for clinical studies of adjuvant anti-inflammatory agents in the treatment of IAPA.
Asunto(s)
Aspergilosis , Gripe Humana , Aspergilosis Pulmonar Invasiva , Aspergilosis Pulmonar , Humanos , Animales , Ratones , Gripe Humana/complicaciones , Aspergilosis/microbiología , Pulmón/microbiología , Aspergilosis Pulmonar Invasiva/microbiología , Aspergillus fumigatus , Inflamación/complicacionesRESUMEN
Vaccination with glucan particles (GP) containing the Cryptococcus neoformans chitin deacetylases Cda1 and Cda2 protect mice against experimental cryptococcosis. Here, immunological correlates of vaccine-mediated protection were explored. Studies comparing knockout and wild-type mice demonstrated CD4+ T cells are crucial, while B cells and CD8+ T cells are dispensable. Protection was abolished following CD4+ T cell depletion during either vaccination or infection but was retained if CD4+ T cells were only partially depleted. Vaccination elicited systemic and durable antigen-specific immune responses in peripheral blood mononuclear cells (PBMCs), spleens, and lungs. Following vaccination and fungal challenge, robust T-helper (Th) 1 and Th17 responses were observed in the lungs. Protection was abrogated in mice congenitally deficient in interferon (IFN) γ, IFNγ receptor, interleukin (IL)-1ß, IL-6, or IL-23. Thus, CD4+ T cells and specific proinflammatory cytokines are required for GP-vaccine-mediated protection. Importantly, retention of protection in the setting of partial CD4+ T depletion suggests a pathway for vaccinating at-risk immunocompromised individuals.
RESUMEN
Inhalation of airborne conidia of the ubiquitous fungus Aspergillus fumigatus commonly occurs but invasive aspergillosis is rare except in profoundly immunocompromised persons. Severe influenza predisposes patients to invasive pulmonary aspergillosis by mechanisms that are poorly defined. Using a post-influenza aspergillosis model, we found that superinfected mice had 100% mortality when challenged with A. fumigatus conidia on days 2 and 5 (early stages) of influenza A virus infection but 100% survival when challenged on days 8 and 14 (late stages). Influenza-infected mice superinfected with A. fumigatus had increased levels of the pro-inflammatory cytokines and chemokines IL-6, TNFα, IFNß, IL-12p70, IL-1α, IL-1ß, CXCL1, G-CSF, MIP-1α, MIP-1ß, RANTES and MCP-1. Surprisingly, on histopathological analysis, superinfected mice did not have greater lung inflammation compared with mice infected with influenza alone. Mice infected with influenza had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus , but only if the fungal challenge was executed during the early stages of influenza infection. However, influenza infection did not have a major effect on neutrophil phagocytosis and killing of A. fumigatus conidia. Moreover, minimal germination of conidia was seen on histopathology even in the superinfected mice. Taken together, our data suggest that the high mortality rate seen in mice during the early stages of influenza-associated pulmonary aspergillosis is multifactorial, with a greater contribution from dysregulated inflammation than microbial growth. Importance: Severe influenza is a risk factor for fatal invasive pulmonary aspergillosis; however, the mechanistic basis for the lethality is unclear. Utilizing an influenza-associated pulmonary aspergillosis (IAPA) model, we found that mice infected with influenza A virus followed by A. fumigatus had 100% mortality when superinfected during the early stages of influenza but survived at later stages. While superinfected mice had dysregulated pulmonary inflammatory responses compared to controls, they had neither increased inflammation nor extensive fungal growth. Although influenza-infected mice had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus , influenza did not affect the ability of neutrophils to clear the fungi. Our data suggest that the lethality seen in our model IAPA is multifactorial with dysregulated inflammation being a greater contributor than uncontrollable microbial growth. If confirmed in humans, our findings provide a rationale for clinical studies of adjuvant anti-inflammatory agents in the treatment of IAPA.
RESUMEN
The high global burden of cryptococcosis has made development of a protective vaccine a public health priority. We previously demonstrated that a vaccine composed of recombinant Cryptococcus neoformans chitin deacetylase 2 (Cda2) delivered in glucan particles (GPs) protects BALB/c and C57BL/6 mice from an otherwise lethal challenge with a highly virulent C. neoformans strain. An immunoinformatic analysis of Cda2 revealed a peptide sequence predicted to have strong binding to the major histocompatibility complex class II (MHC II) H2-IAd allele found in BALB/c mice. BALB/c mice vaccinated with GPs containing a 32-amino-acid peptide (Cda2-Pep1) that included this strong binding region were protected from cryptococcosis. Protection was lost with GP-based vaccines containing versions of recombinant Cda2 protein and Cda2-Pep1 with mutations predicted to greatly diminish MHC II binding. Cda2 has homology to the three other C. neoformans chitin deacetylases, Cda1, Cda3, and Fpd1, in the high-MHC II-binding region. GPs loaded with homologous peptides of Cda1, Cda3, and Fpd1 protected BALB/c mice from experimental cryptococcosis, albeit not as robustly as the Cda2-Pep1 vaccine. Finally, seven other peptides were synthesized based on regions in Cda2 predicted to contain promising CD4+ T cell epitopes in BALB/c or C57BL/6 mice. While five peptide vaccines significantly protected BALB/c mice, only one protected C57BL/6 mice. Thus, GP-based vaccines containing a single peptide can protect mice against cryptococcosis. However, given the diversity of human MHC II alleles, a peptide-based Cryptococcus vaccine for use in humans would be challenging and likely need to contain multiple peptide sequences. IMPORTANCE Cryptococcosis, due to infection by fungi of the Cryptococcus neoformans species complex, is responsible for substantial morbidity and mortality in immunocompromised persons, particularly those with AIDS. Cryptococcal vaccines are a public health priority yet are not available for human use. We previously demonstrated mice could be protected from experimental cryptococcosis with vaccines composed of recombinant cryptococcal proteins encased in hollow highly purified yeast cell walls (glucan particles). In this study, we examined one such protective protein, Cda2, and using bioinformatics, we identified a region predicted to stimulate strong T cell responses. A peptide containing this region formulated in glucan particle-based vaccines protected mice as well as the recombinant protein. Other peptide vaccines also protected, including peptides containing sequences from proteins homologous to Cda2. These preclinical mouse studies provide a proof of principle that peptides can be effective as vaccines to protect against cryptococcosis and that bioinformatic approaches can guide peptide selection.