Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 322(3): C521-C545, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138178

RESUMEN

Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.


Asunto(s)
Glicósido Hidrolasas , NAD , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Células Endoteliales/metabolismo , Ratones , NAD/metabolismo , NAD+ Nucleosidasa/metabolismo
2.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27555322

RESUMEN

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Lepra Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Línea Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacología , Mitocondrias/metabolismo , Células de Schwann/microbiología
3.
Aging (Albany NY) ; 15(8): 2852-2862, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37086260

RESUMEN

Wound healing is an essential physiological process for restoring normal skin structure and function post-injury. The role of cellular senescence, an essentially irreversible cell cycle state in response to damaging stimuli, has emerged as a critical mechanism in wound remodeling. Transiently-induced senescence during tissue remodeling has been shown to be beneficial in the acute wound healing phase. In contrast, persistent senescence, as observed in chronic wounds, contributes to delayed closure. Herein we describe a chronic wound murine model and its cellular senescence profile, including the senescence-associated secretory phenotype.


Asunto(s)
Senescencia Celular , Piel , Ratones , Animales , Senescencia Celular/fisiología , Piel/metabolismo , Cicatrización de Heridas/fisiología , División Celular , Fenotipo Secretor Asociado a la Senescencia
5.
iScience ; 25(11): 105431, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388973

RESUMEN

In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.

6.
Arch Biochem Biophys ; 496(1): 53-60, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20117072

RESUMEN

The present work describes the effects of metformin on hexokinase (HK) and phosphofructokinase (PFK) activities and localization in different tissues from streptozotocin-induced diabetic mice. Diabetic mice present lower HK and PFK activities (50%) in skeletal muscle, liver and adipose tissue, as compared with control (P<0.05). Treatment with 250 mg/kg metformin reverses this pattern of enzyme inhibition with concomitant reversal of hyperglycemia and hypolactacidemia. Furthermore, the treatment increases the cytoskeleton-associated PFK activity in skeletal muscle; this activity has been described as an important mechanism for the enzyme activation. This effect might be due to the increased phosphorylation of serine residues in the enzyme, a modification which has been described to increase the interaction of PFK with f-actin. The current work supports the hypothesis that metformin hypoglycemic effects involve the activation of glycolysis through its regulatory enzymes, which may be potential targets for the development of new hypoglycemic drugs.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Diabetes Mellitus Experimental/enzimología , Hexoquinasa/metabolismo , Hígado/efectos de los fármacos , Metformina/farmacología , Músculo Esquelético/efectos de los fármacos , Fosfofructoquinasa-1/metabolismo , Tejido Adiposo/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Línea Celular , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diseño de Fármacos , Glucólisis/efectos de los fármacos , Hipoglucemia/tratamiento farmacológico , Hígado/metabolismo , Masculino , Metformina/uso terapéutico , Ratones , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA