Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neurosci ; 37(6): 1568-1580, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28069919

RESUMEN

Guidance of axons to their proper synaptic target sites requires spatially and temporally precise modulation of biochemical signals within growth cones. Ionic calcium (Ca2+) is an essential signal for axon guidance that mediates opposing effects on growth cone motility. The diverse effects of Ca2+ arise from the precise localization of Ca2+ signals into microdomains containing specific Ca2+ effectors. For example, differences in the mechanical and chemical composition of the underlying substrata elicit local Ca2+ signals within growth cone filopodia that regulate axon guidance through activation of the protease calpain. However, how calpain regulates growth cone motility remains unclear. Here, we identify the adhesion proteins talin and focal adhesion kinase (FAK) as proteolytic targets of calpain in Xenopus laevis spinal cord neurons both in vivo and in vitro Inhibition of calpain increases the localization of endogenous adhesion signaling to growth cone filopodia. Using live cell microscopy and specific calpain-resistant point-mutants of talin (L432G) and FAK (V744G), we find that calpain inhibits paxillin-based adhesion assembly through cleavage of talin and FAK, and adhesion disassembly through cleavage of FAK. Blocking calpain cleavage of talin and FAK inhibits repulsive turning from focal uncaging of Ca2+ within filopodia. In addition, blocking calpain cleavage of talin and FAK in vivo promotes Rohon-Beard peripheral axon extension into the skin. These data demonstrate that filopodial Ca2+ signals regulate axon outgrowth and guidance through calpain regulation of adhesion dynamics through specific cleavage of talin and FAK.SIGNIFICANCE STATEMENT The proper formation of neuronal networks requires accurate guidance of axons and dendrites during development by motile structures known as growth cones. Understanding the intracellular signaling mechanisms that govern growth cone motility will clarify how the nervous system develops and regenerates, and may identify areas of therapeutic intervention in disease or injury. One important signal that controls growth cones is that of local Ca2+ transients, which control the rate and direction of axon outgrowth. We demonstrate here that Ca2+-dependent inhibition axon outgrowth and guidance is mediated by calpain proteolysis of the adhesion proteins talin and focal adhesion kinase. Our findings provide mechanistic insight into Ca2+/calpain regulation of growth cone motility and axon guidance during neuronal development.


Asunto(s)
Orientación del Axón/fisiología , Calpaína/fisiología , Adhesión Celular/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteolisis , Talina/metabolismo , Animales , Señalización del Calcio/fisiología , Conos de Crecimiento/metabolismo , Humanos , Médula Espinal/embriología , Médula Espinal/metabolismo , Xenopus laevis
2.
Development ; 142(3): 486-96, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25564649

RESUMEN

Invadopodia and podosomes, collectively referred to as invadosomes, are F-actin-rich basal protrusions of cells that provide sites of attachment to and degradation of the extracellular matrix. Invadosomes promote the invasion of cells, ranging from metastatic cancer cells to immune cells, into tissue. Here, we show that neuronal growth cones form protrusions that share molecular, structural and functional characteristics of invadosomes. Growth cones from all neuron types and species examined, including a variety of human neurons, form invadosomes both in vitro and in vivo. Growth cone invadosomes contain dynamic F-actin and several actin regulatory proteins, as well as Tks5 and matrix metalloproteinases, which locally degrade the matrix. When viewed using three-dimensional super-resolution microscopy, F-actin foci often extended together with microtubules within orthogonal protrusions emanating from the growth cone central domain. Finally, inhibiting the function of Tks5 both reduced matrix degradation in vitro and disrupted motoneuron axons from exiting the spinal cord and extending into the periphery. Taken together, our results suggest that growth cones use invadosomes to target protease activity during axon guidance through tissues.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Axones/fisiología , Extensiones de la Superficie Celular/fisiología , Matriz Extracelular/metabolismo , Conos de Crecimiento/fisiología , Neuronas Motoras/fisiología , Actinas/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Humanos , Imagenología Tridimensional , Immunoblotting , Inmunohistoquímica , Metaloproteinasas de la Matriz/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevis
3.
J Neurosci ; 36(7): 2267-82, 2016 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-26888936

RESUMEN

UNLABELLED: Growth cones interact with the extracellular matrix (ECM) through integrin receptors at adhesion sites termed point contacts. Point contact adhesions link ECM proteins to the actin cytoskeleton through numerous adaptor and signaling proteins. One presumed function of growth cone point contacts is to restrain or "clutch" myosin-II-based filamentous actin (F-actin) retrograde flow (RF) to promote leading edge membrane protrusion. In motile non-neuronal cells, myosin-II binds and exerts force upon actin filaments at the leading edge, where clutching forces occur. However, in growth cones, it is unclear whether similar F-actin-clutching forces affect axon outgrowth and guidance. Here, we show in Xenopus spinal neurons that RF is reduced in rapidly migrating growth cones on laminin (LN) compared with non-integrin-binding poly-d-lysine (PDL). Moreover, acute stimulation with LN accelerates axon outgrowth over a time course that correlates with point contact formation and reduced RF. These results suggest that RF is restricted by the assembly of point contacts, which we show occurs locally by two-channel imaging of RF and paxillin. Further, using micropatterns of PDL and LN, we demonstrate that individual growth cones have differential RF rates while interacting with two distinct substrata. Opposing effects on RF rates were also observed in growth cones treated with chemoattractive and chemorepulsive axon guidance cues that influence point contact adhesions. Finally, we show that RF is significantly attenuated in vivo, suggesting that it is restrained by molecular clutching forces within the spinal cord. Together, our results suggest that local clutching of RF can control axon guidance on ECM proteins downstream of axon guidance cues. SIGNIFICANCE STATEMENT: Here, we correlate point contact adhesions directly with clutching of filamentous actin retrograde flow (RF), which our findings strongly suggest guides developing axons. Acute assembly of new point contact adhesions is temporally and spatially linked to attenuation of RF at sites of forward membrane protrusion. Importantly, clutching of RF is modulated by extracellular matrix (ECM) proteins and soluble axon guidance cues, suggesting that it may regulate axon guidance in vivo. Consistent with this notion, we found that RF rates of spinal neuron growth cones were slower in vivo than what was observed in vitro. Together, our study provides the best evidence that growth cone-ECM adhesions clutch RF locally to guide axons in vivo.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Actinas/genética , Animales , Adhesión Celular , Conos de Crecimiento/fisiología , Laminina/farmacología , Neuronas/fisiología , Polilisina/farmacología , Ratas , Médula Espinal/citología , Xenopus laevis
4.
J Cell Sci ; 126(Pt 5): 1122-33, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23321640

RESUMEN

The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuritas/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Humanos , Immunoblotting , Inmunohistoquímica , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Intercambio de Guanina Nucleótido Rho , Xenopus laevis
5.
J Cell Sci ; 126(Pt 11): 2411-23, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23572514

RESUMEN

Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuritas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Antígenos de Histocompatibilidad Menor , Neuropéptidos/metabolismo , Fosfolípidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas/fisiología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
6.
J Neurosci ; 33(1): 273-85, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23283340

RESUMEN

Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients. Ca(2+) influx through MS TRPC1 activates the protease calpain, which cleaves the integrin adaptor protein talin to reduce Src-dependent axon outgrowth, likely through altered adhesion turnover. We found that talin accumulates at the tips of dynamic filopodia, which is lost upon cleavage of talin by active calpain. This pathway may also be important in axon guidance decisions since asymmetric inhibition of MS TRPC1 is sufficient to induce growth cone turning. Together our results suggest that Ca(2+) influx through MS TRPC1 on filopodia activates calpain to control growth cone turning during development.


Asunto(s)
Axones/metabolismo , Calpaína/metabolismo , Conos de Crecimiento/metabolismo , Canales Catiónicos TRPC/metabolismo , Talina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Femenino , Masculino , Neuronas/citología , Neuronas/metabolismo , Proteolisis , Seudópodos/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Canales Catiónicos TRPC/genética , Xenopus , Proteínas de Xenopus/genética
7.
J Neurochem ; 129(2): 221-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24164353

RESUMEN

Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.


Asunto(s)
Actinas/metabolismo , Conos de Crecimiento/fisiología , Citoesqueleto de Actina/fisiología , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Humanos , Proteínas de Microfilamentos/metabolismo , Seudópodos/fisiología
8.
J Cell Sci ; 125(Pt 12): 2918-29, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22393238

RESUMEN

There is biochemical, imaging and functional evidence that Rho GTPase signaling is a crucial regulator of actin-based structures such as lamellipodia and filopodia. However, although Rho GTPases are believed to serve similar functions in growth cones, the spatiotemporal dynamics of Rho GTPase signaling has not been examined in living growth cones in response to known axon guidance cues. Here we provide the first measurements of Cdc42 activity in living growth cones acutely stimulated with both growth-promoting and growth-inhibiting axon-guidance cues. Interestingly, we find that both permissive and repulsive factors can work by modulating Cdc42 activity, but in opposite directions. We find that the growth-promoting factors laminin and BDNF activate Cdc42, whereas the inhibitor Slit2 reduces Cdc42 activity in growth cones. Remarkably, we find that regulation of focal adhesion kinase (FAK) activity is a common upstream modulator of Cdc42 by BDNF, laminin and Slit. These findings suggest that rapid modulation of Cdc42 signaling through FAK by receptor activation underlies changes in growth cone motility in response to permissive and repulsive guidance cues.


Asunto(s)
Axones/enzimología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Conos de Crecimiento/enzimología , Conos de Crecimiento/metabolismo , Humanos , Laminina/metabolismo , Transducción de Señal , Xenopus laevis , Proteína de Unión al GTP cdc42/genética
9.
J Neurosci ; 31(38): 13585-95, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940449

RESUMEN

The ability of extending axons to navigate using combinations of extracellular cues is essential for proper neural network formation. One intracellular signaling molecule that integrates convergent signals from both extracellular matrix (ECM) proteins and growth factors is focal adhesion kinase (FAK). Analysis of FAK function shows that it influences a variety of cellular activities, including cell motility, proliferation, and differentiation. Recent work in developing neurons has shown that FAK and Src function downstream of both attractive and repulsive growth factors, but little is known about the effectors or cellular mechanisms that FAK controls in growth cones on ECM proteins. We report that FAK functions downstream of brain-derived neurotrophic factor (BDNF) and laminin in the modulation of point contact dynamics, phosphotyrosine signaling at filopodial tips, and lamellipodial protrusion. BDNF stimulation accelerates paxillin-containing point contact turnover and formation. Knockdown of FAK function either with a FAK antisense morpholino or by expression of FRNK, a dominant-negative FAK isoform, blocks all aspects of the response to BDNF, including the acceleration of point contact dynamics. On the other hand, expression of specific FAK point mutants can selectively disrupt distinct aspects of the response to BDNF. We also show that growth cone turning depends on both signaling cascades tested here. Finally, we provide the first evidence that growth cone point contacts are asymmetrically regulated during turning to an attractive guidance cue.


Asunto(s)
Quimiotaxis/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Conos de Crecimiento/fisiología , Transducción de Señal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/farmacología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Células Cultivadas , Quimiotaxis/genética , Embrión no Mamífero , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Conos de Crecimiento/efectos de los fármacos , Mutación , Oligonucleótidos Antisentido/genética , Paxillin/genética , Paxillin/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Fosfotirosina/fisiología , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/fisiología , Seudópodos/metabolismo , Transducción de Señal/genética , Xenopus laevis , Familia-src Quinasas/metabolismo , Familia-src Quinasas/fisiología
10.
Cell Rep ; 39(7): 110827, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584680

RESUMEN

Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.


Asunto(s)
Células Fotorreceptoras , Células Madre Pluripotentes , Axones , Diferenciación Celular , Humanos , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Retina/metabolismo
11.
J Cell Biol ; 174(7): 1047-58, 2006 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17000881

RESUMEN

Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However, the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a "neuropeptide," neurokinin-B (NK-B), reversibly inhibits endothelial cell vascular network assembly and opposes angiogenesis in the chicken chorioallantoic membrane. Disruption of endogenous NK-B signaling promoted angiogenesis. Mechanistic analyses defined a multicomponent pathway in which NK-B signaling converges upon cellular processes essential for angiogenesis. NK-B-mediated ablation of Ca2+ oscillations and elevation of 3'-5' [corrected] cyclic adenosine monophosphate (cAMP) reduced cellular proliferation, migration, and vascular endothelial growth factor receptor expression and induced the antiangiogenic protein calreticulin. Whereas NK-B initiated certain responses, other activities required additional stimuli that increase cAMP. Although NK-B is a neurotransmitter/ neuromodulator and NK-B overexpression characterizes the pregnancy-associated disorder preeclampsia, NK-B had not been linked to vascular remodeling. These results establish a conserved mechanism in which NK-B instigates multiple activities that collectively oppose vascular remodeling.


Asunto(s)
Inhibidores de la Angiogénesis/fisiología , Neuroquinina B/fisiología , Transducción de Señal/fisiología , Tromboxano A2/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Ratones , Modelos Biológicos , Músculo Liso Vascular/fisiología , Neuroquinina B/farmacología , Neurotransmisores/farmacología , Neurotransmisores/fisiología , Receptores de Factores de Crecimiento Endotelial Vascular/fisiología , Transducción de Señal/efectos de los fármacos , Tromboxano A2/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiología
12.
Mol Cell Neurosci ; 44(2): 118-28, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20298788

RESUMEN

We have investigated the role of Vav2, a reported Rac1/Cdc42 GEF, on the development of Xenopus spinal neurons in vitro and in vivo. Both gain and loss of Vav2 function inhibited the rate neurite extension on laminin (LN), while only GFP-Vav2 over-expression enhanced process formation and branching. Vav2 over-expression protected neurons from RhoA-mediated growth cone collapse, similar to constitutively active Rac1, suggesting that Vav2 activates Rac1 in spinal neurons. Enhanced branching on LN required both Vav2 GEF activity and N-terminal tyrosine residues, but protection from RhoA-mediated collapse only required GEF activity. Interestingly, wild-type spinal neurons exhibited increased branching on the cell adhesion molecule L1, which required Vav2 GEF function, but not N-terminal tyrosine residues. Finally, we find that Vav2 differentially affects the Rohon-Beard peripheral and central process extension but promotes neurite branching of commissural interneurons near the ventral midline. Together, we suggest that balanced Vav2 activity is necessary for optimal neurite outgrowth and promotes branching by targeting GEF activity to branch points.


Asunto(s)
Diferenciación Celular/fisiología , Neuritas/metabolismo , Neurogénesis/fisiología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Células Cultivadas , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Humanos , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/farmacología , Neuritas/ultraestructura , Estructura Terciaria de Proteína/fisiología , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Médula Espinal/citología , Tirosina/química , Tirosina/metabolismo , Xenopus laevis , Proteína de Unión al GTP rac1/metabolismo
13.
Front Neurosci ; 15: 678454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093120

RESUMEN

Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.

14.
Curr Opin Neurobiol ; 66: 233-239, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33477094

RESUMEN

The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.


Asunto(s)
Orientación del Axón , Conos de Crecimiento , Axones , Sistema Nervioso , Redes Neurales de la Computación , Neuronas
15.
Nat Commun ; 12(1): 2589, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972524

RESUMEN

Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls. By differentiating hiPSCs, we show that control neurons respond to canonical guidance cues as predicted. Conversely, neurons with heterozygous loss of TSC2 exhibit reduced responses to several repulsive cues and defective axon guidance. While TSC2 is a known key negative regulator of MTOR-dependent protein synthesis, we find that TSC2 signaled through MTOR-independent RHOA in growth cones. Our results suggest that neural network connectivity defects in patients with TSC may result from defects in RHOA-mediated regulation of cytoskeletal dynamics during neuronal development.


Asunto(s)
Orientación del Axón/genética , Células Madre Pluripotentes Inducidas/metabolismo , Red Nerviosa/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Adolescente , Orientación del Axón/efectos de los fármacos , Biopsia , Sistemas CRISPR-Cas , Línea Celular , Efrinas/farmacología , Transferencia Resonante de Energía de Fluorescencia , Haploinsuficiencia , Heterocigoto , Humanos , Masculino , Miosinas/metabolismo , Red Nerviosa/patología , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Organoides/citología , Organoides/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
16.
J Neurosci ; 29(44): 13981-91, 2009 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-19890008

RESUMEN

Adhesion controls growth cone motility, yet the effects of axon guidance cues on adhesion site dynamics are poorly understood. Here we show that ephrin-A1 reduces retinal ganglion cell (RGC) axon outgrowth by stabilizing existing adhesions and inhibiting new adhesion assembly. Ephrin-A1 activates focal adhesion kinase (FAK) in an integrin- and Src-dependent manner and the effects of ephrin-A1 on growth cone motility require FAK activation. We also find that FAK is expressed in a high temporal to low nasal gradient in RGCs, similar to EphA receptors, and that balanced FAK activation is necessary for optimal axon outgrowth. Last, we find that FAK is required for proper topographic positioning of retinal axons along the anterior-posterior axis of the optic tectum in both Xenopus and zebrafish, a guidance decision mediated in part by A-type ephrins. Together, our data suggest that ephrin-A1 controls growth cone advance by modulating adhesive point contacts through FAK activation and that graded FAK signaling is an important component of ephrin-A-mediated retinotopic mapping.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Conos de Crecimiento/fisiología , Retina/fisiología , Animales , Animales Modificados Genéticamente , Adhesión Celular/fisiología , Células Cultivadas , Pollos , Activación Enzimática/fisiología , Conos de Crecimiento/enzimología , Retina/enzimología , Xenopus laevis , Pez Cebra
17.
Nat Neurosci ; 9(10): 1274-83, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964253

RESUMEN

Extracellular matrix (ECM) components regulate neurite outgrowth in tissue culture and in vivo. Live imaging of phosphotyrosine (PY) signals revealed that Xenopus laevis growth cones extending on permissive ECM substrata assemble adhesive point contacts containing enriched levels of tyrosine-phosphorylated proteins. Whereas focal adhesion kinase (FAK) signaling is dispensable for the assembly of focal adhesions in non-neuronal cells, FAK activity is required for the formation of growth cone point contacts. FAK-dependent point contacts promote rapid neurite outgrowth by stabilizing lamellipodial protrusions on permissive ECM substrata. Moreover, local FAK activity is required for ECM-dependent growth cone turning in vitro, suggesting that FAK may control axon pathfinding in vivo. Consistent with this possibility, proper growth and guidance of Rohon-Beard sensory neurons and spinal commissural interneurons requires FAK activity. These findings identify FAK as a key regulator of axon growth and guidance downstream of growth cone-ECM interactions.


Asunto(s)
Axones/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrinas/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Axones/enzimología , Blastómeros/efectos de los fármacos , Blastómeros/fisiología , Western Blotting/métodos , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Embrión no Mamífero , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/fisiología , Neuronas/citología , Neuronas/enzimología , Paxillin/metabolismo , Fosforilación/efectos de los fármacos , Médula Espinal/citología , Factores de Tiempo , Tirosina/metabolismo , Xenopus laevis
18.
Front Neurosci ; 14: 203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210757

RESUMEN

The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.

19.
Stem Cell Reports ; 13(6): 1006-1021, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31708476

RESUMEN

The microenvironment of developing neurons is a dynamic landscape of both chemical and mechanical cues that regulate cell proliferation, differentiation, migration, and axon extension. While the regulatory roles of chemical ligands in neuronal morphogenesis have been described, little is known about how mechanical forces influence neurite development. Here, we tested how substratum elasticity regulates neurite development of human forebrain (hFB) neurons and human motor neurons (hMNs), two populations of neurons that naturally extend axons into distinct elastic environments. Using polyacrylamide and collagen hydrogels of varying compliance, we find that hMNs preferred rigid conditions that approximate the elasticity of muscle, whereas hFB neurons preferred softer conditions that approximate brain tissue elasticity. More stable leading-edge protrusions, increased peripheral adhesions, and elevated RHOA signaling of hMN growth cones contributed to faster neurite outgrowth on rigid substrata. Our data suggest that RHOA balances contractile and adhesive forces in response to substratum elasticity.


Asunto(s)
Neurogénesis , Neuronas/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Axones/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Corteza Cerebral/citología , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mecanotransducción Celular , Miosina Tipo II/metabolismo , Regeneración Nerviosa , Proyección Neuronal , Neuronas/citología , Especificidad de Órganos , Fosforilación
20.
Cell Rep ; 29(3): 685-696.e5, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618636

RESUMEN

Syntaphilin (SNPH) is a major mitochondrial anchoring protein targeted to axons and excluded from dendrites. In this study, we provide in vivo evidence that this spatial specificity is lost in Shiverer (Shi) mice, a model for progressive multiple sclerosis (MS), resulting in inappropriate intrusion of SNPH into dendrites of cerebellar Purkinje cells with neurodegenerative consequences. Thus, reconstituting dendritic SNPH intrusion in SNPH-KO mice by viral transduction greatly sensitizes Purkinje cells to excitotoxicity when the glutamatergic climbing fibers are stimulated. Finally, we demonstrate in vitro that overexpression of SNPH in dendrites compromises neuronal viability by inducing N-methyl-D-aspartate (NMDA) excitotoxicity, reducing mitochondrial calcium uptake, and interfering with quality control of mitochondria by blocking somal mitophagy. Collectively, we propose that inappropriate immobilization of dendritic mitochondria by SNPH intrusion produces excitotoxicity and suggest that interception of dendritic SNPH intrusion is a therapeutic strategy to combat neurodegeneration.


Asunto(s)
Dendritas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Calcio/metabolismo , Células Cultivadas , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA