Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(6): 1328-1334, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31545545

RESUMEN

Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon-sulfur (C-S) and sulfur-oxygen (S-O) bond formation as well as carbon-hydrogen (C-H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C-S and C-Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.


Asunto(s)
Acidobacteria/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Fúngicas/antagonistas & inhibidores , Selenocisteína/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Unión Competitiva , Biocatálisis , Dominio Catalítico , Cisteína-Dioxigenasa/antagonistas & inhibidores , Cisteína-Dioxigenasa/metabolismo , Ergotioneína/química , Ergotioneína/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Simulación de Dinámica Molecular , Mycobacteriaceae/enzimología , Selenocisteína/metabolismo
2.
J Am Chem Soc ; 141(13): 5275-5285, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883103

RESUMEN

Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.


Asunto(s)
Acidobacteria/enzimología , Ergotioneína/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Oxígeno/metabolismo , Sitios de Unión , Biocatálisis , Ergotioneína/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química
3.
Angew Chem Int Ed Engl ; 54(9): 2821-4, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25597398

RESUMEN

The non-heme iron enzyme EgtB catalyzes O2 -dependent C-S bond formation between γ-glutamyl cysteine and N-α-trimethyl histidine as the central step in ergothioneine biosynthesis. Both, the catalytic activity and the architecture of EgtB are distinct from known sulfur transferases or thiol dioxygenases. The crystal structure of EgtB from Mycobacterium thermoresistibile in complex with γ-glutamyl cysteine and N-α-trimethyl histidine reveals that the two substrates and three histidine residues serve as ligands in an octahedral iron binding site. This active site geometry is consistent with a catalytic mechanism in which C-S bond formation is initiated by an iron(III)-complexed thiyl radical attacking the imidazole ring of N-α-trimethyl histidine.


Asunto(s)
Vías Biosintéticas , Ergotioneína/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Biocatálisis , Ergotioneína/química , Modelos Moleculares , Conformación Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo
4.
Chem Commun (Camb) ; 52(9): 1945-8, 2016 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-26679371

RESUMEN

EgtB from Mycobacterium thermoresistibile catalyzes O2-dependent sulfur-carbon bond formation between the side chains of Nα-trimethyl histidine and γ-glutamyl cysteine as a central step in ergothioneine biosynthesis. A single point mutation converts this enzyme into a γ-glutamyl cysteine dioxygenase with an efficiency that rivals naturally evolved thiol dioxygenases.


Asunto(s)
Dioxigenasas/química , Hierro/química , Mutación Puntual , Dominio Catalítico , Dioxigenasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA