Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 124(8): 1155-1172, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357411

RESUMEN

This study aimed to explore the effect of myricitrin on osteoblast differentiation in mice immortalised bone marrow mesenchymal stem cells (imBMSCs). Additionally, ovariectomy (OVX) mice were employed to examine the effect of myricitrin on bone trabecular loss in vivo. The effect of myricitrin on the proliferation of imBMSCs was evaluated using a cell counting kit-8 assay. Alizarin red staining, alkaline phosphatase staining were performed to elucidate osteogenesis. Furthermore, qRT-PCR and western blot determined the expression of osteo-specific genes and proteins. To screen for candidate targets, mRNA transcriptome genes were sequenced using bioinformatics analyses. Western blot and molecular docking analysis were used to examine target signalling markers. Moreover, rescue experiments were used to confirm the effect of myricitrin on the osteogenic differentiation of imBMSCs. OVX mice were also used to estimate the delay capability of myricitrin on bone trabecular loss in vivo using western blot, micro-CT, tartaric acid phosphatase (Trap) staining, haematoxylin and eosin staining, Masson staining and immunochemistry. In vitro, myricitrin significantly enhanced osteo-specific genes and protein expression and calcium deposition. Moreover, mRNA transcriptome gene sequencing and molecular docking analysis revealed that this enhancement was accompanied by an upregulation of the PI3K/AKT signalling pathway. Furthermore, copanlisib, a PI3K inhibitor, partially reversed the osteogenesis promotion induced by myricitrin. In vivo, western blot, micro-CT, hematoxylin and eosin staining, Masson staining, Trap staining and immunochemistry revealed that bone trabecular loss rate was significantly alleviated in the myricitrin low- and high-dose groups, with an increased expression of osteopontin, osteoprotegerin, p-PI3K and p-AKT compared to the OVX group. Myricitrin enhances imBMSC osteoblast differentiation and attenuate bone mass loss partly through the upregulation of the PI3K/AKT signalling pathway. Thus, myricitrin has therapeutic potential as an antiosteoporosis drug.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteogénesis , Animales , Femenino , Ratones , Diferenciación Celular , Células Cultivadas , Eosina Amarillenta-(YS)/farmacología , Simulación del Acoplamiento Molecular , Osteogénesis/genética , Ovariectomía , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero
2.
Opt Express ; 30(26): 46870-46887, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558628

RESUMEN

In this study, we propose a parallel processing method for analyzing video-image radiation-response signals and suppressing radiation noise. We studied the linear-representation law of various image-information components on the radiation dose rate. Subsequently, the simulation images were used to examine the response-signal extract and radiation-noise suppression. The results indicate that the majority of response signals in the global image comprise forward superposition. The peak signal-to-noise ratio of the red channel was significantly improved when the noise signal-substitution algorithm and median filter were applied successively. Real-time radiation dose-rate measurements and clear images under irradiation can be obtained simultaneously.

3.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408137

RESUMEN

Designing a robot with the best accuracy is always an attractive research direction in the robotics community. In order to create a Gough-Stewart platform with guaranteed accuracy performance for a dedicated controller, this paper describes a novel advanced optimal design methodology: control-based design methodology. This advanced optimal design method considers the controller positioning accuracy in the design process for getting the optimal geometric parameters of the robot. In this paper, three types of visual servoing controllers are applied to control the motions of the Gough-Stewart platform: leg-direction-based visual servoing, line-based visual servoing, and image moment visual servoing. Depending on these controllers, the positioning error models considering the camera observation error together with the controller singularities are analyzed. In the next step, the optimization problems are formulated in order to get the optimal geometric parameters of the robot and the placement of the camera for the Gough-Stewart platform for each type of controller. Then, we perform co-simulations on the three optimized Gough-Stewart platforms in order to test the positioning accuracy and the robustness with respect to the manufacturing errors. It turns out that the optimal control-based design methodology helps get both the optimum design parameters of the robot and the performance of the controller {robot + dedicated controller}.

4.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336450

RESUMEN

Herein, we report the γ-ray ionizing radiation response of a commercial monolithic active-pixel sensor (MAPS) camera under strong-dose-rate irradiation with an online detection and monitoring system for strong radiation conditions. We present the first results of the distribution of three types of MAPS camera and establish a linear relationship between the average response signal and radiation dose rate in the strong-dose-rate range. There is an obvious response signal in the video frames when the camera module parameters are set to automatic, but the linear response is very poor. However, the fixed image parameters are not good at adapting to the changes of the environment and affect the quality of the video frames. A dual module online radiation detection and monitoring probe was made to carry out effective video monitoring and radiation detection at the same time. The measurement results show that the dose rate detection error is less than 5% with a dose rate in the range of 60 to 425 Gy/h, and the visible light image does not have obvious distortion, deformation, or color shift due to the interference of the radiation response event and radiation damage. Hence, the system test results show that it can be used for online detection and monitoring in a strong radiation environment.


Asunto(s)
Rayos gamma
5.
Opt Express ; 29(22): 34913-34925, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34808940

RESUMEN

We present γ-ray radiation detection in a neutron radiation environment using a monolithic active pixel sensor (MAPS) camera without conversion or shielding layers. The measured output signal is the sum of the pedestal value, noise, and real radiation response signal. The sensor response shows that the MAPS camera is sensitive to neutrons and can capture a single photon. The number of pixels with a signal exceeding 100 exhibits a strong dependence on the dose rate and is the best indicator of this value. Therefore, a MAPS camera can be efficiently used as a radiation detection sensor in a robotic system, further limiting human errors in performing radiation detection in complex nuclear radiation environments.

6.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560453

RESUMEN

To allow mobile robots to visually observe the temperature of equipment in complex industrial environments and work on temperature anomalies in time, it is necessary to accurately find the coordinates of temperature anomalies and obtain information on the surrounding obstacles. This paper proposes a visual saliency detection method for hypertemperature in three-dimensional space through dual-source images. The key novelty of this method is that it can achieve accurate salient object detection without relying on high-performance hardware equipment. First, the redundant point clouds are removed through adaptive sampling to reduce the computational memory. Second, the original images are merged with infrared images and the dense point clouds are surface-mapped to visually display the temperature of the reconstructed surface and use infrared imaging characteristics to detect the plane coordinates of temperature anomalies. Finally, transformation mapping is coordinated according to the pose relationship to obtain the spatial position. Experimental results show that this method not only displays the temperature of the device directly but also accurately obtains the spatial coordinates of the heat source without relying on a high-performance computing platform.

7.
Cell Physiol Biochem ; 48(3): 1347-1354, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30048993

RESUMEN

BACKGROUND/AIMS: Elabela (ELA) or Toddler is a recently identified hormone that plays a crucial role in embryonic development through the activation of the apelin receptor (APJ). Our previous study indicated that ELA is highly expressed in adult kidney and the ELA receptor signaling pathway is functional in mammalian systems. Whereas nothing is yet known regarding ELA and diabetic kidney disease (DKD). Here, we evaluated the relationship between serum ELA levels and albuminuria in patients with type 2 diabetes (T2D). METHODS: An observational study involving 80 patients divided into groups according to their baseline urinary albumin/creatinine ratio (ACR): Group 1 (ACR ≤ 29 mg/g), Group 2 (ACR = 30-299 mg/g), Group 3 (ACR ≥ 300 mg/g with normal serum creatinine), and Group 4 (ACR ≥ 300 mg/g with increased serum creatinine). The demographic, clinical, and biochemical variables including serum ELA were obtained or measured through disease history, physical examination, or laboratory evidence. RESULTS: The results showed that the serum ELA levels decreased gradually with the deterioration of DKD from the stages of normal albuminuria, microalbuminuria, macroalbuminuria, to macroalbuminuria and elevated serum creatinine. In addition, ELA had a significantly negative correlation with ACR (r = -0.561, P < 0.001), retinopathy (r = -0.424, P < 0.001), serum creatinine (r = -0.269, P = 0.016), SBP (r = -0.249, P = 0.026), DBP (r = -0.261, P = 0.020) and a positive correlation with eGFR (r = 0.318, P = 0.004). Furthermore, stepwise multiple linear regression analysis showed that ACR, retinopathy, and LDL-C were considered the most relevant variables to ELA, and ELA, retinopathy, eGFR, and age were important predictors for ACR (t = -4.546, P = 0.000). CONCLUSIONS: To our knowledge, this is the first study to explore the clinical relationship between ELA levels and CKD. Decreased serum ELA levels might be a significant clinical predictor in patients with DKD or even as a promising agent for treating CKD patients.


Asunto(s)
Albuminuria/sangre , Diabetes Mellitus Tipo 2/sangre , Nefropatías Diabéticas/sangre , Hormonas Peptídicas/sangre , Adulto , Anciano , Albuminuria/complicaciones , Albuminuria/orina , Creatinina/sangre , Creatinina/orina , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/orina , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Diabetes Metab Res Rev ; 34(5): e2997, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29577579

RESUMEN

BACKGROUND: Apelin is a peptide ligand of the G-protein-coupled receptor APJ and exhibits anti-diabetes and anti-heart failure activities. However, short serum half-life of the apelin peptide limits its potential clinical applications. This study aimed to develop a long-acting apelin analog. METHODS: To extend apelin's in vivo half-life, we made a recombinant protein by fusing the IgG Fc fragment to apelin-13 (Fc-apelin-13), conducted pharmacokinetics studies in mice, and determined in vitro biological activities in suppressing cyclic adenosine monophosphate and activating extracellular signal-regulated kinase signalling by reporter assays. We investigated the effects of Fc-apelin-13 on food intake, body weight, fasting blood glucose and insulin levels, glucose tolerance test, hepatic steatosis, and cardiac function and fibrosis by subcutaneous administration of Fc-apelin-13 in diet-induced obese mice for 4 weeks. RESULTS: The estimated half-life of Fc-apelin-13 in blood was approximately 33 hours. Reporter assays showed that Fc-apelin-13 was active in suppressing cyclic adenosine monophosphate response element and activating serum response element activities. Four weeks of Fc-apelin-13 treatment in obese mice did not affect food intake and body weight, but resulted in a significant improvement of glucose tolerance, and a decrease in hepatic steatosis and fibrosis, as well as in serum alanine transaminase levels. Moreover, cardiac stroke volume and output were increased and cardiac fibrosis was decreased in the treated mice. CONCLUSIONS: Fc-apelin-13 fusion protein has an extended in vivo half-life and exerts multiple benefits on obese mice with respect to the improvement of glucose disposal, amelioration of liver steatosis and heart fibrosis, and increase of cardiac output. Hence, Fc-apelin-13 is potentially a therapeutic for obesity-associated disease conditions.


Asunto(s)
Dieta/efectos adversos , Hígado Graso/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Fragmentos Fc de Inmunoglobulinas/química , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Obesidad/complicaciones , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Hígado Graso/etiología , Hígado Graso/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología
9.
N Engl J Med ; 370(24): 2307-2315, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24848981

RESUMEN

BACKGROUND: Lipolysis regulates energy homeostasis through the hydrolysis of intracellular triglycerides and the release of fatty acids for use as energy substrates or lipid mediators in cellular processes. Genes encoding proteins that regulate energy homeostasis through lipolysis are thus likely to play an important role in determining susceptibility to metabolic disorders. METHODS: We sequenced 12 lipolytic-pathway genes in Old Order Amish participants whose fasting serum triglyceride levels were at the extremes of the distribution and identified a novel 19-bp frameshift deletion in exon 9 of LIPE, encoding hormone-sensitive lipase (HSL), a key enzyme for lipolysis. We genotyped the deletion in DNA from 2738 Amish participants and performed association analyses to determine the effects of the deletion on metabolic traits. We also obtained biopsy specimens of abdominal subcutaneous adipose tissue from 2 study participants who were homozygous for the deletion (DD genotype), 10 who were heterozygous (ID genotype), and 7 who were noncarriers (II genotype) for assessment of adipose histologic characteristics, lipolysis, enzyme activity, cytokine release, and messenger RNA (mRNA) and protein levels. RESULTS: Carriers of the mutation had dyslipidemia, hepatic steatosis, systemic insulin resistance, and diabetes. In adipose tissue from study participants with the DD genotype, the mutation resulted in the absence of HSL protein, small adipocytes, impaired lipolysis, insulin resistance, and inflammation. Transcription factors responsive to peroxisome-proliferator-activated receptor γ (PPAR-γ) and downstream target genes were down-regulated in adipose tissue from participants with the DD genotype, altering the regulation of pathways influencing adipogenesis, insulin sensitivity, and lipid metabolism. CONCLUSIONS: These findings indicate the physiological significance of HSL in adipocyte function and the regulation of systemic lipid and glucose homeostasis and underscore the severe metabolic consequences of impaired lipolysis. (Funded by the National Institutes of Health and others).


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Lipólisis/genética , Esterol Esterasa/genética , Adulto , Anciano , Amish/genética , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Femenino , Heterocigoto , Humanos , Resistencia a la Insulina/genética , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Linaje
10.
J Lipid Res ; 57(7): 1256-63, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27178044

RESUMEN

The glucocorticoid-induced leucine zipper (GILZ), a primary target of glucocorticoids, is expressed in human adipocytes, but its importance in adipocyte function is unknown. Because TNFα is increased in obese adipose tissue and antagonizes a number of glucocorticoid actions, we investigated the interplay of these pathways. GILZ knockdown increased and GILZ overexpression decreased interleukin-6 (IL-6) and leptin mRNA and protein secretion. GILZ knockdown increased the magnitude of the glucocorticoid effect on leptin secretion, but did not affect the glucocorticoid suppression of IL-6. Although GILZ silencing decreased adiponectin mRNA levels, it did not affect the amount of adiponectin secreted. GILZ negatively modulated pro-inflammatory signaling pathways, blocking basal and TNFα-stimulated (1 h) p65 nuclear factor κB nuclear translocation and transcriptional activity by binding to p65 in the cytoplasm. GILZ silencing increased basal ERK1/2 and JNK phosphorylation, and decreased MAPK phosphatase-1 protein levels. Longer term TNFα (4 h or 24 h) treatment decreased GILZ expression in human adipocytes. Furthermore, adipose tissue GILZ mRNA levels were reduced in proportion to the degree of obesity and expression of inflammatory markers. Overall, these results suggest that GILZ antagonizes the pro-inflammatory effects of TNFα in human adipocytes, and its downregulation in obesity may contribute to adipose inflammation and dysregulated adipokine production, and thereby systemic metabolism.


Asunto(s)
Inflamación/genética , Obesidad/genética , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Biopsia , Fosfatasa 1 de Especificidad Dual/metabolismo , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Leptina/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Obesidad/metabolismo , Obesidad/patología , ARN Mensajero/biosíntesis , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/biosíntesis , Factor de Necrosis Tumoral alfa/genética
11.
Diabetes Metab Res Rev ; 31(6): 562-71, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25865565

RESUMEN

BACKGROUND: Alanine transaminase (ALT) plays an important role in gluconeogenesis by converting alanine into pyruvate for glucose production. Early studies have shown that ALT activities are upregulated in gluconeogenic conditions and may be implicated in the development of diabetes. ALT consists of two isoforms, ALT1 and ALT2, with distinctive subcellular and tissue distributions. Whether and how they are regulated are largely unknown. METHODS: By using Western blotting analysis, we measured hepatic ALT isoforms at the protein level in obese and diabetic animals and in Fao hepatoma cells treated with dexamethasone and insulin. In addition, we measured glucose output in Fao cells over-expressing ALT1 and ALT2. RESULTS: Both ALT isoforms in the liver were increased in diabetic Goto-Kakizaki rats and during fasting. However, in ob/ob mice, only ALT2, but not ALT1, protein levels were elevated, and the increase of ALT2 was correlated with that of ALT activity. We further demonstrated that, in vitro, both ALT1 and ALT2 were induced by glucocorticoid dexamethasone, but suppressed by insulin in Fao cells. Finally, we showed that the over-expression of ALT1 and ALT2 in Fao cells directly increased glucose output. CONCLUSIONS: We have shown the similarity and difference in the regulation of ALT isoforms in gluconeogenic conditions at the protein level, supporting that ALT isoenzymes play an important role in glucose metabolism and may be implicated the development of insulin resistance and diabetes.


Asunto(s)
Alanina Transaminasa/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Inducción Enzimática , Gluconeogénesis , Hígado/enzimología , Obesidad/enzimología , Alanina Transaminasa/antagonistas & inhibidores , Alanina Transaminasa/química , Alanina Transaminasa/genética , Animales , Línea Celular , Dexametasona/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Inducción Enzimática/efectos de los fármacos , Represión Enzimática/efectos de los fármacos , Glucocorticoides/farmacología , Gluconeogénesis/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Insulina/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Obesidad/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
J Inherit Metab Dis ; 38(5): 941-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25758935

RESUMEN

Intellectual disability is genetically heterogeneous, and it is likely that many of the responsible genes have not yet been identified. We describe three siblings with isolated, severe developmental encephalopathy. After extensive uninformative genetic and metabolic testing, whole exome sequencing identified a homozygous novel variant in glutamic pyruvate transaminase 2 (GPT2) or alanine transaminase 2 (ALT2), c.459 C > G p.Ser153Arg that segregated with developmental encephalopathy in the family. This variant was predicted to be damaging by all in silico prediction algorithms. GPT2 is the gene encoding ALT2 which is responsible for the reversible transamination of alanine and 2-oxoglutarate to form pyruvate and glutamate. GPT2 is expressed in brain and is in the pathway to generate glutamate, an excitatory neurotransmitter. Functional assays of recombinant wild-type and mutant ALT2 proteins demonstrated the p.Ser153Arg mutation resulted in a severe loss of enzymatic function. We suggest that recessively inherited loss of function GPT2 mutations are a novel cause of intellectual disability.


Asunto(s)
Encefalopatías/genética , Discapacidad Intelectual/genética , Mutación Missense , Transaminasas/genética , Adolescente , Alanina Transaminasa/genética , Encefalopatías/congénito , Preescolar , Consanguinidad , Femenino , Humanos , Masculino , Linaje , Hermanos
13.
Aging (Albany NY) ; 16(1): 648-664, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194722

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS: In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS: In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS: DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.


Asunto(s)
Medicamentos Herbarios Chinos , FN-kappa B , Osteoartritis de la Rodilla , Ratas , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Transducción de Señal , Inflamación/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo , Condrocitos/metabolismo
14.
J Lipid Res ; 54(4): 953-65, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345411

RESUMEN

Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid ß-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment.


Asunto(s)
Cardiomiopatías/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas/metabolismo , Animales , Western Blotting , Cardiomiopatías/genética , Línea Celular , Cricetinae , ADN Mitocondrial/genética , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Perilipina-5 , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo
15.
Breast Cancer Res Treat ; 141(2): 317-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24002734

RESUMEN

It is now well accepted that tumor cells actively communicate with the tumor microenvironment (e.g., adipocytes) leading to the progression of breast cancer and other malignancies. It is also known that adipose mesenchymal stem cells (MSCs) have the ability to differentiate into mature adipocytes and initiate cytokine signaling within the tumor microenvironment. Here, we examine the role of MSC-differentiated adipocytes on breast cancer cell migration, and test the effects of sulforaphane (SFN, a dietary chemoprevention agent) on adipocyte-breast cancer cell interaction. Our results demonstrate that SFN promotes MSC self-renewal and inhibits adipogenic differentiation. Subsequently, SFN treatment of adipocytes considerably hinders cytokine communication with breast cancer cells, thereby decreasing breast cancer cell migration and tumor formation.


Asunto(s)
Adipogénesis/efectos de los fármacos , Isotiocianatos/farmacología , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Ratones , Sulfóxidos
16.
Artículo en Inglés | MEDLINE | ID: mdl-37847626

RESUMEN

This article aims to solve the optimal tracking problem (OTP) for a class of discrete-time (DT) nonlinear systems with completely unknown dynamics. A novel data-driven deterministic approximate dynamic programming (ADP) algorithm is proposed to solve this kind of problem with only input-output (I/O) data. The proposed algorithm has two advantages compared to existing data-driven deterministic ADP algorithms for the OTP. First, our algorithm can guarantee optimality while achieving better performance in the aspects of time-saving and robustness to data. Second, the near-optimal control policy learned by our algorithm can be implemented without considering expected control and enable the system states to track the user-specified reference signals. Therefore, the tracking performance is guaranteed while simplifying the algorithm implementation. Furthermore, the convergence and stability of the proposed algorithm are strictly proved through theoretical analysis, in which the errors caused by neural networks (NNs) are considered. At the end of this article, the developed algorithm is compared with two representative deterministic ADP algorithms through a numerical example and applied to solve the tracking problem for a two-link robotic manipulator. The simulation results demonstrate the effectiveness and advantages of the developed algorithm.

17.
Org Lett ; 25(22): 4198-4202, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37255222

RESUMEN

A nickel-catalyzed semihydrogenation of azoarenes to hydrazoarenes with NH3BH3 is developed. The catalytic system exhibits good functional group tolerance and a high turnover frequency at room temperature. Results of control and deuterium-labeling experiments indicate that the ethanol hydroxyl and BH3 groups each donated one hydrogen to this transfer hydrogenation, and the main byproducts were B(OEt)3 and H2. Moreover, density functional theory calculations indicated that the reaction proceeded via a ligand-to-ligand hydrogen transfer mechanism. This study presents a novel nickel catalytic system for the semihydrogenation of azoarenes.


Asunto(s)
Hidrógeno , Níquel , Hidrogenación , Ligandos , Catálisis
18.
ACS Omega ; 8(39): 36597-36603, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810663

RESUMEN

Four ruthenium complexes were used as catalysts for the N-methylation of amines using methanol as the C1 source under weak base conditions. The (DPEPhos)RuCl2PPh3(1a) catalyst showed the best catalytic performance (0.5 mol %, 12 h). The deuterium labeling and control experiments suggested the reaction via the Ru-H mechanism. This study provides a new ruthenium catalyst system for N-methylation with methanol under weak base conditions.

19.
Mol Biotechnol ; 65(3): 394-400, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35960440

RESUMEN

Apelin receptor (APJ) ligands elabela (ELA) and apelin have divergent distributions and function differently in vitro and in vivo. Whether differences exist in their capacity of recruitment of ß-arrestins (ARRBs) to APJ remains unknown. The aim of the current study was to investigate the different effects of ELA and apelin on the interaction between APJ and ARRBs in live cells by NanoBiT®. NanoBiT® system is a new technology for studying protein-protein interaction in real-time in live cells, based on the emission of luminescence when two split components of NanoLuc luciferase, large Bit (LgBit) and small Bit (SmBit), complement each other to form an enzymatically active entity. We tagged the APJ and ARRBs with LgBit or SmBit and then evaluated their interactions in transiently transfected HEK293T cells, and determined the signal strength yielded as a result of the interaction. We also investigated the concentration-dependent response of the APJ-ARRB interaction in response to ELA and apelin. Finally, we assessed the effect of F13A, an APJ antagonist which is structurally very similar to apelin-13, on ELA- and apelin-mediated APJ-ARRB interactions. The NanoLuc® luciferase signal was highest in the pair of APJ-LgBit with SmBit-ARRB1 or SmBit-ARRB2. NanoLuc® luciferase signal increased in a concentration-dependent manner from 0.1 nM to 10 µM in response to ELA or apelin. Interestingly, ELA elicited weaker APJ-ARRB interaction signals than apelin. Pre-treatment with F13A potently reduced the APJ-ARRB interaction in response to both ELA and apelin. Our results demonstrated that both ELA and apelin promoted the interaction of APJ and ARRBs in a concentration-dependent manner, and ELA is less efficacious than apelin in inducing the recruitment of ARRBs to APJ, providing a biased functional aspect of ELA vs. apelin at the receptor signaling level. Additionally, ELA and apelin may share the same binding site(s) or pocket(s) at the APJ level.


Asunto(s)
Receptores de Apelina , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , beta-Arrestinas/metabolismo , Sitios de Unión , Células HEK293
20.
Med Sci Sports Exerc ; 55(7): 1172-1183, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878020

RESUMEN

PURPOSE: The aim of this study was to investigate the function and mechanisms of ELABELA (ELA) in the aerobic exercise-induced antiapoptosis and angiogenesis of ischemic heart. METHODS: The myocardial infarction (MI) model of Sprague-Dawley rat was established by the ligation of the left anterior descending coronary artery. MI rats underwent 5 wk of Fc-ELA-21 subcutaneous injection and aerobic exercise training using a motorized rodent treadmill. Heart function was evaluated by hemodynamic measures. Cardiac pathological remodeling was evaluated by Masson's staining and the calculation of left ventricular weight index. Cell proliferation, angiogenesis, and Yes-associated protein (YAP) translocation were observed by immunofluorescence staining. Cell apoptosis was analyzed by TUNEL. Cell culture and treatment were used to elucidate the molecular mechanism of ELA. Protein expression was detected by Western blotting. Angiogenesis was observed by tubule formation test. One-way or two-way ANOVA and Student's t -test were used for statistical analysis. RESULTS: Aerobic exercise stimulated the endogenous ELA expression. Exercise and Fc-ELA-21 intervention significantly activated APJ-Akt-mTOR-P70S6K signaling pathway, kept more cardiomyocytes alive, and increased angiogenesis, so as to inhibit the cardiac pathological remodeling and improved the heart function of MI rats. Fc-ELA-32 also had the cellular and functional cardioprotective activities in vivo . In vitro , ELA-14 peptide regulated the phosphorylation and nucleoplasmic translocation of YAP and activated the APJ-Akt signaling pathway so as to increase the proliferation of H9C2 cells. Moreover, the antiapoptosis and the tubule formation of HUVECs were also enhanced by ELA-14, whereas the inhibition of Akt activity weakened such effects. CONCLUSIONS: ELA is a potential therapeutic member that plays a key role through APJ-Akt/YAP signaling axis in aerobic exercise-induced cardioprotection of MI rats.


Asunto(s)
Infarto del Miocardio , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Infarto del Miocardio/prevención & control , Transducción de Señal , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA